Suppr超能文献

咬合翼片X线片上龋病检测的评估:改进的深度学习模型与牙医表现的对比分析

Evaluation of Caries Detection on Bitewing Radiographs: A Comparative Analysis of the Improved Deep Learning Model and Dentist Performance.

作者信息

Ayhan Baturalp, Ayan Enes, Karadağ Gökhan, Bayraktar Yusuf

机构信息

Department of Restorative Dentistry, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey.

Department of Computer Engineering, Faculty of Engineering and Architecture, Kırıkkale University, Kırıkkale, Turkey.

出版信息

J Esthet Restor Dent. 2025 Jul;37(7):1949-1961. doi: 10.1111/jerd.13470. Epub 2025 Apr 7.

Abstract

OBJECTIVES

The application of deep learning techniques for detecting caries in bitewing radiographs has gained significant attention in recent years. However, the comparative performance of various modern deep learning models and strategies to enhance their accuracy remains an area requiring further investigation.

METHODS

This study explored the capabilities of 11 widely used YOLO (You Only Look Once) object detection models to automatically identify enamel and dentin caries from bitewing radiographs. To further optimize detection performance, the YOLOv9c model's backbone architecture was refined, reducing both model size and computational requirements. The enhanced model was assessed alongside six dentists, using the same test dataset for direct comparison.

RESULTS

The proposed YOLOv9c model achieved the highest performance among the evaluated models, with recall, precision, specificity, F1-score, and Youden index values of 0.727, 0.651, 0.726, 0.687, and 0.453, respectively. Notably, the YOLOv9c model surpassed the performance of the dentists, as indicated by its recall and F1-score values.

CONCLUSIONS

The proposed YOLOv9c model proved to be highly effective in detecting enamel and dentin caries, outperforming other models and even clinical evaluations by dentists in this study. Its high accuracy positions it as a valuable tool to augment dentists' diagnostic capabilities.

CLINICAL SIGNIFICANCE

The results emphasize the potential of the YOLOv9c model to assist dentists in clinical settings, offering accurate and efficient support for caries detection and contributing to improved patient outcomes.

摘要

目的

近年来,深度学习技术在咬合翼片X线片龋病检测中的应用受到了广泛关注。然而,各种现代深度学习模型的比较性能以及提高其准确性的策略仍是一个需要进一步研究的领域。

方法

本研究探讨了11种广泛使用的YOLO(You Only Look Once)目标检测模型从咬合翼片X线片中自动识别釉质和牙本质龋的能力。为了进一步优化检测性能,对YOLOv9c模型的骨干架构进行了优化,减小了模型大小和计算需求。使用相同的测试数据集,将增强后的模型与六位牙医的检测结果进行直接比较评估。

结果

在评估的模型中,所提出的YOLOv9c模型表现最佳,召回率、精确率、特异性、F1分数和尤登指数值分别为0.727、0.651、0.726、0.687和0.453。值得注意的是,YOLOv9c模型的召回率和F1分数表明其性能超过了牙医。

结论

所提出的YOLOv9c模型在检测釉质和牙本质龋方面被证明是非常有效的,在本研究中优于其他模型,甚至超过了牙医的临床评估。其高准确性使其成为增强牙医诊断能力的有价值工具。

临床意义

结果强调了YOLOv9c模型在临床环境中协助牙医的潜力,为龋病检测提供准确、高效的支持,并有助于改善患者治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验