Suppr超能文献

手术方式对恶性叶状肿瘤的影响及机器学习对其生存预测

Impact of surgical approach and survival prediction of malignant phyllode tumor by machine learning.

作者信息

Zhang Gongyin, Xu Foyan, Wan Lixian

机构信息

Department of Breast Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.

Department of Breast Surgery, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong Province, China.

出版信息

Updates Surg. 2025 Apr 7. doi: 10.1007/s13304-025-02191-4.

Abstract

We aimed to analyze the effect of surgical approach on patients with malignant phyllode tumor of the breast (MPTB) and to develop a prognostic prediction model for patients with MPTB. We extracted MPTB patients aged 18-80 years between 2000 and 2020 from the SEER database. Covariable imbalance was reduced using the propensity-score matching (PSM) method. An analysis of Cox proportional hazard regression was performed to compare breast cancer-specific survival (BCSS) with overall survival (OS). The survival curves were generated using the Kaplan-Meier method. The 5-year BCSS and 5-year OS of patients with MPTB were predicted by ten models based on machine learning. According to multivariate Cox analysis, surgical treatment of MPTB does not affect long-term survival outcomes (p > 0.05). Among our study, the survival outcomes of mastectomy and BCS would not be statistically significant even for patients with poor pathologic type of MPTB (p > 0.05). In terms of AUC, CatBoost performed better than other algorithms with a 5-year BCSS of 0.8488 and a 5-year OS of 0.8512. BCS and mastectomy do not make a significant difference in the long-term survival outcomes of patients with MPTB. Therefore, we suggest that BCS is feasible and preferred provided that surgical margin requirements can be met. As a trusted model, CatBoost provides better guidance and support for the systemic treatment of patients with MPTB.

摘要

我们旨在分析手术方式对乳腺恶性叶状肿瘤(MPTB)患者的影响,并建立MPTB患者的预后预测模型。我们从监测、流行病学和最终结果(SEER)数据库中提取了2000年至2020年间年龄在18 - 80岁的MPTB患者。使用倾向得分匹配(PSM)方法减少协变量不平衡。进行Cox比例风险回归分析以比较乳腺癌特异性生存(BCSS)和总生存(OS)。使用Kaplan - Meier方法生成生存曲线。基于机器学习的十个模型对MPTB患者的5年BCSS和5年OS进行预测。根据多变量Cox分析,MPTB的手术治疗不影响长期生存结果(p>0.05)。在我们的研究中,即使对于病理类型较差的MPTB患者,乳房切除术和保乳手术(BCS)的生存结果在统计学上也无显著差异(p>0.05)。在曲线下面积(AUC)方面,CatBoost算法表现优于其他算法,5年BCSS为0.8488,5年OS为0.8512。BCS和乳房切除术在MPTB患者的长期生存结果上没有显著差异。因此,我们建议在能够满足手术切缘要求的情况下,BCS是可行且更可取的。作为一个可靠的模型,CatBoost为MPTB患者的系统治疗提供了更好的指导和支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验