Li Shujing, Meng Xiangyu, Zhu Chuntong, Xu Wanlin, Sun Yueming, Lu Xiaofeng, Dai Yunqian
School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
ACS Nano. 2025 Apr 22;19(15):14579-14604. doi: 10.1021/acsnano.4c17688. Epub 2025 Apr 7.
The advancement of intelligent ecosystems depends upon not only technological innovation but also a multidimensional understanding of material-world interactions. This theoretical transformation prompts increasing demands for multifunctional materials exhibiting hierarchical organization across multiple length scales. Inorganic nanofibers demonstrate potential in bridging the gap between microscale and macroscale through their three-dimensional architectures. However, their inherent brittleness, primarily resulting from inferior structural integrity poses, significantly limits their current applications. This critical limitation highlights the urgent necessity for developing fabrication strategies that simultaneously enhance the mechanical flexibility and robustness, ensuring reliable performance under extreme operational conditions. This comprehensive review systematically examines brittle mechanism fracture through multiscale analysis including molecular, nanoscale, and microscale dimensions. It presents innovative methodologies integrating simulation-guided structural design with advanced in situ characterization techniques capable of real-time monitoring under a practical stress-strain process. Furthermore, the discussion progresses to address contemporary challenges and emergent solutions in oxide nanofiber engineering, providing strategic insights for developing mechanically robust flexible systems with stable functional properties. Ultimately, this review examines the potential of inorganic nanofibers to overcome the limitations of nano powder materials and achieve their promising real-world applications.
智能生态系统的发展不仅取决于技术创新,还依赖于对物质世界相互作用的多维度理解。这种理论转变促使人们对在多个长度尺度上呈现层次结构的多功能材料的需求日益增加。无机纳米纤维通过其三维结构在弥合微观尺度和宏观尺度之间的差距方面展现出潜力。然而,它们固有的脆性主要源于结构完整性较差,这严重限制了它们目前的应用。这一关键限制凸显了开发同时增强机械柔韧性和坚固性的制造策略的迫切必要性,以确保在极端操作条件下的可靠性能。这篇综述通过包括分子、纳米尺度和微观尺度维度的多尺度分析系统地研究了脆性机制断裂。它提出了创新方法,将模拟指导的结构设计与先进的原位表征技术相结合,这些技术能够在实际应力应变过程中进行实时监测。此外,讨论进而探讨了氧化物纳米纤维工程中的当代挑战和新兴解决方案,为开发具有稳定功能特性的机械坚固的柔性系统提供战略见解。最终,这篇综述考察了无机纳米纤维克服纳米粉末材料局限性并实现其在现实世界中应用前景的潜力。