Zhu Yu, Li Binghuan, Armour Chloe, Pirola Selene, Salmasi Yousuf, Athanasiou Thanos, O'Regan Declan P, Xu Xiao Yun
IEEE Trans Biomed Eng. 2025 Apr 7;PP. doi: 10.1109/TBME.2025.3558436.
Computational modelling of ascending thoracic aortic aneurysms (ATAA) typically assumes zerodisplacement at the model's inlet. In this study we incorporated different types of aortic root motion into fluid-structure interaction (FSI) models representing an ATAA and a healthy aorta to examine their impacts on wall stress and wall shear stress (WSS) predictions.
Five types of boundary conditions were specified at the inlet of the solid domain: (a) zerodisplacement constraints, (b) longitudinal displacement, (c) inplane displacement, (d) combined longitudinal and in-plane displacement, and (e) rotation. The aortic walls were prestressed and modelled as anisotropic hyperelastic materials. A transitional turbulence model was employed to simulate the non-Newtonian blood flow, together with patient-specific boundary conditions.
Combined longitudinal and in-plane displacement at the aortic root increased regions with elevated maximum principal stress (MPS > 250 kPa) by 331% for the healthy aorta, and 57.1% for the ATAA model. Peak wall stress showed modest increases by 11.4% and 14% in the ATAA model and healthy aorta, respectively. Combined longitudinal and in-plane displacement increased the area of extremely high WSS regions (> 20 Pa) by 20.5% in the ATAA model, primarily in the ascending aorta. For the healthy aorta, rotation had the most notable impact on WSS, reducing the area of elevated WSS regions (> 7 Pa) by 18.8%.
Our results highlight the importance of incorporating aortic root motion into FSI models for more accurate prediction of aortic wall stress and WSS. This would enhance patient-specific risk stratification for patients with ATAA.
胸主动脉瘤(ATAA)的计算模型通常假定模型入口处位移为零。在本研究中,我们将不同类型的主动脉根部运动纳入代表ATAA和健康主动脉的流固耦合(FSI)模型中,以研究它们对壁面应力和壁面切应力(WSS)预测的影响。
在固体域入口处指定了五种类型的边界条件:(a)零位移约束,(b)纵向位移,(c)平面内位移,(d)纵向和平面内组合位移,以及(e)旋转。对主动脉壁施加预应力,并将其建模为各向异性超弹性材料。采用过渡湍流模型来模拟非牛顿血流,并结合患者特定的边界条件。
对于健康主动脉,主动脉根部的纵向和平面内组合位移使最大主应力升高区域(MPS>250 kPa)增加了331%,对于ATAA模型则增加了57.1%。ATAA模型和健康主动脉的峰值壁面应力分别适度增加了11.4%和14%。纵向和平面内组合位移使ATAA模型中极高WSS区域(>20 Pa)的面积增加了20.5%,主要位于升主动脉。对于健康主动脉,旋转对WSS的影响最为显著,使WSS升高区域(>7 Pa)的面积减少了18.8%。
我们的结果强调了将主动脉根部运动纳入FSI模型对于更准确预测主动脉壁应力和WSS的重要性。这将增强ATAA患者的个体化风险分层。