Suppr超能文献

主动脉根部运动在胸段升主动脉瘤流固耦合模拟中的作用

Role of Aortic Root Motion in Fluid-Structure Interaction Simulations of Ascending Thoracic Aortic Aneurysm.

作者信息

Zhu Yu, Li Binghuan, Armour Chloe, Pirola Selene, Salmasi Yousuf, Athanasiou Thanos, O'Regan Declan P, Xu Xiao Yun

出版信息

IEEE Trans Biomed Eng. 2025 Apr 7;PP. doi: 10.1109/TBME.2025.3558436.

Abstract

OBJECTIVE

Computational modelling of ascending thoracic aortic aneurysms (ATAA) typically assumes zerodisplacement at the model's inlet. In this study we incorporated different types of aortic root motion into fluid-structure interaction (FSI) models representing an ATAA and a healthy aorta to examine their impacts on wall stress and wall shear stress (WSS) predictions.

METHODS

Five types of boundary conditions were specified at the inlet of the solid domain: (a) zerodisplacement constraints, (b) longitudinal displacement, (c) inplane displacement, (d) combined longitudinal and in-plane displacement, and (e) rotation. The aortic walls were prestressed and modelled as anisotropic hyperelastic materials. A transitional turbulence model was employed to simulate the non-Newtonian blood flow, together with patient-specific boundary conditions.

RESULTS

Combined longitudinal and in-plane displacement at the aortic root increased regions with elevated maximum principal stress (MPS > 250 kPa) by 331% for the healthy aorta, and 57.1% for the ATAA model. Peak wall stress showed modest increases by 11.4% and 14% in the ATAA model and healthy aorta, respectively. Combined longitudinal and in-plane displacement increased the area of extremely high WSS regions (> 20 Pa) by 20.5% in the ATAA model, primarily in the ascending aorta. For the healthy aorta, rotation had the most notable impact on WSS, reducing the area of elevated WSS regions (> 7 Pa) by 18.8%.

CONCLUSION

Our results highlight the importance of incorporating aortic root motion into FSI models for more accurate prediction of aortic wall stress and WSS. This would enhance patient-specific risk stratification for patients with ATAA.

摘要

目的

胸主动脉瘤(ATAA)的计算模型通常假定模型入口处位移为零。在本研究中,我们将不同类型的主动脉根部运动纳入代表ATAA和健康主动脉的流固耦合(FSI)模型中,以研究它们对壁面应力和壁面切应力(WSS)预测的影响。

方法

在固体域入口处指定了五种类型的边界条件:(a)零位移约束,(b)纵向位移,(c)平面内位移,(d)纵向和平面内组合位移,以及(e)旋转。对主动脉壁施加预应力,并将其建模为各向异性超弹性材料。采用过渡湍流模型来模拟非牛顿血流,并结合患者特定的边界条件。

结果

对于健康主动脉,主动脉根部的纵向和平面内组合位移使最大主应力升高区域(MPS>250 kPa)增加了331%,对于ATAA模型则增加了57.1%。ATAA模型和健康主动脉的峰值壁面应力分别适度增加了11.4%和14%。纵向和平面内组合位移使ATAA模型中极高WSS区域(>20 Pa)的面积增加了20.5%,主要位于升主动脉。对于健康主动脉,旋转对WSS的影响最为显著,使WSS升高区域(>7 Pa)的面积减少了18.8%。

结论

我们的结果强调了将主动脉根部运动纳入FSI模型对于更准确预测主动脉壁应力和WSS的重要性。这将增强ATAA患者的个体化风险分层。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验