Sprott G D, Shaw K M, Jarrell K F
J Biol Chem. 1985 Aug 5;260(16):9244-50.
We describe a K+ transport system in Methanospirillum hungatei cells depleted of cytoplasmic K+ via an ammonia/K+ exchange reaction (Sprott, G. D., Shaw, K. M., and Jarrell, K. F. (1984) J. Biol. Chem. 259, 12602-12608). Ammonia-treated cells contained low concentrations of ATP and were unable to make CH4 or to transport 86Rb+. All of these properties were restored by CaCl2, MgCl2, or MnCl2, and not by CoCl2 or NiCl2. The Rb+ transport system had a Km of 0.42 and Vmax of 29 nmol/min X mg; K+ inhibited competitively. Both H2 and CO2 were required for appreciable transport, whereas air, valinomycin, or nigericin were potent inhibitors. The influx of Rb+ was electrogenic and associated with proton efflux, producing a delta pH (alkaline inside) in acidic media. In the absence of K+ (or Rb+), the activation of CH4 synthesis by Mg2+ produced little change in the cytoplasmic pH, showing that methanogenesis did not elicit a net efflux of protons. The pH optimum for transport was in the range 6.0-7.3 where the transmembrane pH gradient would contribute minimally to the proton motive force. Protonophores at pH 6.3 caused a partial decline in CH4 synthesis and the ATP content and dramatically collapsed Rb+ transport. These and other inhibitor experiments, coupled with the fact that the Rb+ gradient was too large to be in equilibrium with the proton motive force alone, suggest a role for both ATP and the proton motive force in Rb+ transport. Also, a role for K+ in osmoregulation is indicated.
我们描述了一种存在于亨氏甲烷螺菌细胞中的钾离子转运系统,该细胞通过氨/钾离子交换反应耗尽了细胞质中的钾离子(Sprott, G. D., Shaw, K. M., and Jarrell, K. F. (1984) J. Biol. Chem. 259, 12602 - 12608)。经氨处理的细胞含有低浓度的ATP,无法产生甲烷或转运⁸⁶Rb⁺。氯化钙、氯化镁或氯化锰可恢复所有这些特性,而氯化钴或氯化镍则不能。铷离子转运系统的Km为0.42,Vmax为29 nmol/min×mg;钾离子具有竞争性抑制作用。可观的转运需要氢气和二氧化碳,而空气、缬氨霉素或尼日利亚菌素是强效抑制剂。铷离子的流入是生电的,并与质子外流相关,在酸性介质中产生ΔpH(内部呈碱性)。在没有钾离子(或铷离子)的情况下,镁离子对甲烷合成的激活作用在细胞质pH值上几乎没有变化,这表明甲烷生成不会引发质子的净外流。转运的最适pH值在6.0 - 7.3范围内,此时跨膜pH梯度对质子动力的贡献最小。pH值为6.③时的质子载体导致甲烷合成和ATP含量部分下降,并使铷离子转运急剧崩溃。这些以及其他抑制剂实验,再加上铷离子梯度太大,无法仅与质子动力达到平衡这一事实,表明ATP和质子动力在铷离子转运中都发挥作用。此外,还表明了钾离子在渗透调节中的作用。