Li Huiliang, Gao Xin, Zhao Yongcheng, Zhou Jie, Hu Zihao, Chen Zhuo, Yang Zuowei, Li Shengyu
College of Ecology and Environment, Xinjiang University, Urumqi, 830017, China.
State key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, Xinjiang, China.
Sci Data. 2025 Apr 7;12(1):585. doi: 10.1038/s41597-025-04936-7.
This study compiles the most comprehensive open-access surface sediment grain-size database (n = 596 samples) spanning the entire Taklamakan Desert, obtained through systematic field sampling and laser diffraction analysis. It provides essential data for understanding the desert formation, evolution, sand sources, and the restoration of aeolian environments. By analyzing key sediment parameters (mean grain size, sorting, skewness, kurtosis) and particle compositions, the dataset reveals sediment transport dynamics and depositional processes critical for understanding desert formation, sand provenance, and aeolian environmental reconstruction. The quantitative characterization of sediment texture and sorting mechanisms provides foundational data for investigating regional dust emissions, wind erosion patterns, and sediment transport capacities. While the primary focus is on the Taklamakan Desert, the methodology and dataset apply to other arid regions, making it a valuable resource for comparative desert studies. It is an indispensable tool for researchers investigating desert landscapes and addressing environmental challenges related to desertification and aeolian processes.
本研究通过系统的野外采样和激光衍射分析,编制了涵盖整个塔克拉玛干沙漠的最全面的开放获取地表沉积物粒度数据库(n = 596个样本)。它为理解沙漠形成、演化、沙源以及风沙环境恢复提供了重要数据。通过分析关键沉积物参数(平均粒度、分选性、偏度、峰度)和颗粒组成,该数据集揭示了对理解沙漠形成、沙源和风沙环境重建至关重要的沉积物输移动力学和沉积过程。沉积物纹理和分选机制的定量表征为研究区域沙尘排放、风蚀模式和沉积物输移能力提供了基础数据。虽然主要关注塔克拉玛干沙漠,但该方法和数据集适用于其他干旱地区,使其成为沙漠比较研究的宝贵资源。它是研究沙漠景观以及应对与荒漠化和风沙过程相关环境挑战的研究人员不可或缺的工具。