Tsupphayakorn-Aek Phanthanyaphon, Risangud Nuttapol, Okhawilai Manunya, Leewattanakit Worapong, Turng Lih-Sheng, Aumnate Chuanchom
Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, Thailand.
Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand.
Sci Rep. 2025 Apr 7;15(1):11900. doi: 10.1038/s41598-025-97120-1.
This study explored the synthesis and 3D printing of an electrolytic hydrogel based on polyacrylamide and acrylic acid copolymer (poly(AM-co-AA)), using lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as a photoinitiator, along with N,N'-Methylene bisacrylamide (MBA) and sodium alginate (SA) for crosslinking. The hydrogel matrix, incorporated with electrolyte fillers, including sodium chloride (NaCl), calcium chloride dihydrate (CaCl·2HO), and aluminum trichloride hexahydrate (AlCl·6HO), was fabricated via a one-step approach and printed with an LCD-3D printer, yielding a porous structure with remarkable water absorption capacity and tailored mechanical properties. Scanning electron microscopy (SEM) analysis of the NaCl electrolyte poly(AM-co-AA) hydrogel revealed a highly porous surface structure, contributing to a remarkable water absorption capacity exceeding 800%. The mechanical and electrical properties of this 3D-printed hydrogel were found to be intermediate between those of MBA crosslinked poly(AM-co-AA) and MBA crosslinked poly(AM-co-AA) with SA. This hydrogel exhibited efficient conductivity and flexibility, making it well-suited for potential use in strain sensors and wearable devices, enabling real-time monitoring of human activities, such as finger bending.
本研究探索了一种基于聚丙烯酰胺和丙烯酸共聚物(聚(AM-co-AA))的电解水凝胶的合成及3D打印方法,使用苯基-2,4,6-三甲基苯甲酰基膦酸锂(LAP)作为光引发剂,并与N,N'-亚甲基双丙烯酰胺(MBA)和海藻酸钠(SA)一起用于交联。通过一步法制备了包含电解质填料(包括氯化钠(NaCl)、二水合氯化钙(CaCl·2HO)和六水合三氯化铝(AlCl·6HO))的水凝胶基质,并用LCD-3D打印机进行打印,得到了具有显著吸水能力和定制机械性能的多孔结构。对NaCl电解质聚(AM-co-AA)水凝胶的扫描电子显微镜(SEM)分析显示出高度多孔的表面结构,其吸水能力超过800%,十分显著。发现这种3D打印水凝胶的机械和电学性能介于MBA交联的聚(AM-co-AA)和MBA与SA交联的聚(AM-co-AA)之间。这种水凝胶表现出高效的导电性和柔韧性,非常适合用于应变传感器和可穿戴设备,能够实时监测人类活动,如手指弯曲。