Hu Bo, Temiz Nesibe Z, Chou Chi-Ning, Rupprecht Peter, Meissner-Bernard Claire, Titze Benjamin, Chung SueYeon, Friedrich Rainer W
Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland.
University of Basel, 4003 Basel, Switzerland.
Res Sq. 2025 Mar 26:rs.3.rs-6155477. doi: 10.21203/rs.3.rs-6155477/v1.
Cognitive brain functions rely on experience-dependent internal representations of relevant information. Such representations are organized by attractor dynamics or other mechanisms that constrain population activity onto "neural manifolds". Quantitative analyses of representational manifolds are complicated by their potentially complex geometry, particularly in the absence of attractor states. Here we trained juvenile and adult zebrafish in an odor discrimination task and measured neuronal population activity to analyze representations of behaviorally relevant odors in telencephalic area pDp, the homolog of piriform cortex. No obvious signatures of attractor dynamics were detected. However, olfactory discrimination training selectively enhanced the separation of neural manifolds representing task-relevant odors from other representations, consistent with predictions of autoassociative network models endowed with precise synaptic balance. Analytical approaches using the framework of revealed multiple geometrical modifications of representational manifolds that supported the classification of task-relevant sensory information. Manifold capacity predicted odor discrimination across individuals better than other descriptors of population activity, indicating a close link between manifold geometry and behavior. Hence, pDp and possibly related recurrent networks store information in the geometry of representational manifolds, resulting in joint sensory and semantic maps that may support distributed learning processes.
认知脑功能依赖于相关信息的经验依赖性内部表征。此类表征由吸引子动力学或其他机制组织,这些机制将群体活动约束到“神经流形”上。表征流形的定量分析因其潜在的复杂几何形状而变得复杂,特别是在没有吸引子状态的情况下。在这里,我们训练幼年和成年斑马鱼进行气味辨别任务,并测量神经元群体活动,以分析端脑pDp区域(梨状皮质的同源物)中与行为相关气味的表征。未检测到吸引子动力学的明显特征。然而,嗅觉辨别训练选择性地增强了代表与任务相关气味的神经流形与其他表征之间的分离,这与具有精确突触平衡的自联想网络模型的预测一致。使用该框架的分析方法揭示了表征流形的多种几何修改,这些修改支持了与任务相关的感官信息的分类。流形容量比群体活动的其他描述符更能预测个体间的气味辨别,这表明流形几何形状与行为之间存在密切联系。因此,pDp以及可能相关的循环网络将信息存储在表征流形的几何形状中,从而产生联合的感官和语义图谱,这可能支持分布式学习过程。