Suppr超能文献

通过优化嗅觉记忆网络中的神经流形进行表征学习。

Representational learning by optimization of neural manifolds in an olfactory memory network.

作者信息

Hu Bo, Temiz Nesibe Z, Chou Chi-Ning, Rupprecht Peter, Meissner-Bernard Claire, Titze Benjamin, Chung SueYeon, Friedrich Rainer W

机构信息

Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland.

University of Basel, 4003 Basel, Switzerland.

出版信息

bioRxiv. 2024 Nov 18:2024.11.17.623906. doi: 10.1101/2024.11.17.623906.

Abstract

Higher brain functions depend on experience-dependent representations of relevant information that may be organized by attractor dynamics or by geometrical modifications of continuous "neural manifolds". To explore these scenarios we analyzed odor-evoked activity in telencephalic area pDp of juvenile and adult zebrafish, the homolog of piriform cortex. No obvious signatures of attractor dynamics were detected. Rather, olfactory discrimination training selectively enhanced the separation of neural manifolds representing task-relevant odors from other representations, consistent with predictions of autoassociative network models endowed with precise synaptic balance. Analytical approaches using the framework of revealed multiple geometrical modifications of representational manifolds that supported the classification of task-relevant sensory information. Manifold capacity predicted odor discrimination across individuals, indicating a close link between manifold geometry and behavior. Hence, pDp and possibly related recurrent networks store information in the geometry of representational manifolds, resulting in joint sensory and semantic maps that may support distributed learning processes.

摘要

高等脑功能依赖于相关信息的经验依赖性表征,这些表征可能由吸引子动力学或连续“神经流形”的几何修饰来组织。为了探究这些情况,我们分析了幼年和成年斑马鱼端脑pDp区域(梨状皮质的同源物)中气味诱发的活动。未检测到吸引子动力学的明显特征。相反,嗅觉辨别训练选择性地增强了代表任务相关气味的神经流形与其他表征之间的分离,这与具有精确突触平衡的自联想网络模型的预测一致。使用该框架的分析方法揭示了表征流形的多种几何修饰,这些修饰支持了任务相关感官信息的分类。流形容量预测了个体间的气味辨别能力,表明流形几何与行为之间存在密切联系。因此,pDp以及可能相关的递归网络将信息存储在表征流形的几何结构中,从而产生可能支持分布式学习过程的联合感官和语义图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/444e/11601331/ae7ada6624f9/nihpp-2024.11.17.623906v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验