Specht Ivan, Moreno Gage K, Brock-Fisher Taylor, Krasilnikova Lydia A, Petros Brittany A, Pekar Jonathan E, Schifferli Mark, Fry Ben, Brown Catherine M, Madoff Lawrence C, Burns Meagan, Schaffner Stephen F, Park Daniel J, MacInnis Bronwyn L, Ozonoff Al, Varilly Patrick, Mitzenmacher Michael D, Sabeti Pardis C
The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA.
Res Sq. 2025 Mar 27:rs.3.rs-6264999. doi: 10.21203/rs.3.rs-6264999/v1.
Transmission reconstruction-the inference of who infects whom in disease outbreaks-offers critical insights into how pathogens spread and provides opportunities for targeted control measures. We developed JUNIPER (Joint Underlying Network Inference for Phylogenetic and Epidemiological Reconstructions), a highly-scalable pathogen outbreak reconstruction tool that incorporates intrahost variation, incomplete sampling, and algorithmic parallelization. Central to JUNIPER is a statistical model for within-host variant frequencies observed by next generation sequencing, which we validated on a dataset of over 160,000 deep-sequenced SARS-CoV-2 genomes. Combining this within-host variation model with population-level evolutionary and transmission models, we developed a method for inferring phylogenies and transmission trees simultaneously. We benchmarked JUNIPER on computer-generated and real outbreaks in which transmission links were known or epidemiologically confirmed. We demonstrated JUNIPER's real-world utility on two large-scale datasets: over 1,500 bovine H5N1 cases and over 13,000 human COVID-19 cases. Based on these analyses, we quantified the elevated H5N1 transmission rates in California and identified high-confidence transmission events, and demonstrated the efficacy of vaccination for reducing SARS-CoV-2 transmission. By overcoming computational and methodological limitations in existing outbreak reconstruction tools, JUNIPER provides a robust framework for studying pathogen spread at scale.
传播重建——推断疾病爆发中谁感染了谁——为病原体的传播方式提供了关键见解,并为采取有针对性的控制措施提供了机会。我们开发了JUNIPER(用于系统发育和流行病学重建的联合潜在网络推断),这是一种高度可扩展的病原体爆发重建工具,它整合了宿主内变异、不完全采样和算法并行化。JUNIPER的核心是一个用于通过下一代测序观察到的宿主内变异频率的统计模型,我们在一个包含超过160,000个深度测序的SARS-CoV-2基因组的数据集上对其进行了验证。将这个宿主内变异模型与群体水平的进化和传播模型相结合,我们开发了一种同时推断系统发育树和传播树的方法。我们在已知或经流行病学确认传播链的计算机生成的和实际爆发事件上对JUNIPER进行了基准测试。我们在两个大规模数据集上展示了JUNIPER在现实世界中的效用:超过1500例牛H5N病例和超过13000例人类COVID-19病例。基于这些分析,我们量化了加利福尼亚州H5N1的传播率升高情况并确定了高可信度的传播事件,还证明了疫苗接种对减少SARS-CoV-2传播的有效性。通过克服现有爆发重建工具中的计算和方法限制,JUNIPER为大规模研究病原体传播提供了一个强大的框架。