Suppr超能文献

使用无先验模型的时空高斯表示(PMF-STGR)进行时间分辨动态CBCT重建。

Time-resolved dynamic CBCT reconstruction using prior-model-free spatiotemporal Gaussian representation (PMF-STGR).

作者信息

Xie Jiacheng, Shao Hua-Chieh, Zhang You

出版信息

ArXiv. 2025 Mar 28:arXiv:2503.22139v1.

Abstract

Time-resolved CBCT imaging, which reconstructs a dynamic sequence of CBCTs reflecting intra-scan motion (one CBCT per x-ray projection without phase sorting or binning), is highly desired for regular and irregular motion characterization, patient setup, and motion-adapted radiotherapy. Representing patient anatomy and associated motion fields as 3D Gaussians, we developed a Gaussian representation-based framework (PMF-STGR) for fast and accurate dynamic CBCT reconstruction. PMF-STGR comprises three major components: a dense set of 3D Gaussians to reconstruct a reference-frame CBCT for the dynamic sequence; another 3D Gaussian set to capture three-level, coarse-to-fine motion-basis-components (MBCs) to model the intra-scan motion; and a CNN-based motion encoder to solve projection-specific temporal coefficients for the MBCs. Scaled by the temporal coefficients, the learned MBCs will combine into deformation vector fields to deform the reference CBCT into projection-specific, time-resolved CBCTs to capture the dynamic motion. Due to the strong representation power of 3D Gaussians, PMF-STGR can reconstruct dynamic CBCTs in a 'one-shot' training fashion from a standard 3D CBCT scan, without using any prior anatomical or motion model. We evaluated PMF-STGR using XCAT phantom simulations and real patient scans. Metrics including the image relative error, structural-similarity-index-measure, tumor center-of-mass-error, and landmark localization error were used to evaluate the accuracy of solved dynamic CBCTs and motion. PMF-STGR shows clear advantages over a state-of-the-art, INR-based approach, PMF-STINR. Compared with PMF-STINR, PMF-STGR reduces reconstruction time by 50% while reconstructing less blurred images with better motion accuracy. With improved efficiency and accuracy, PMF-STGR enhances the applicability of dynamic CBCT imaging for potential clinical translation.

摘要

时间分辨锥形束CT(CBCT)成像可重建反映扫描内运动的CBCT动态序列(每个X射线投影一幅CBCT,无相位分类或分箱),对于常规和不规则运动特征描述、患者摆位以及运动自适应放射治疗非常有必要。我们将患者解剖结构和相关运动场表示为三维高斯分布,开发了一种基于高斯表示的框架(PMF-STGR)用于快速准确的动态CBCT重建。PMF-STGR由三个主要部分组成:一组密集的三维高斯分布,用于重建动态序列的参考帧CBCT;另一组三维高斯分布,用于捕获三级、从粗到细的运动基元分量(MBC),以模拟扫描内运动;以及一个基于卷积神经网络(CNN)的运动编码器,用于求解MBC的投影特定时间系数。通过时间系数进行缩放,学习到的MBC将组合成变形矢量场,使参考CBCT变形为投影特定的、时间分辨的CBCT,以捕获动态运动。由于三维高斯分布具有强大的表示能力,PMF-STGR可以从标准的三维CBCT扫描以“一次性”训练方式重建动态CBCT,而无需使用任何先前的解剖或运动模型。我们使用XCAT体模模拟和真实患者扫描对PMF-STGR进行了评估。使用包括图像相对误差、结构相似性指数测量、肿瘤质心误差和地标定位误差在内的指标来评估求解的动态CBCT和运动的准确性。PMF-STGR相对于一种基于INR的先进方法PMF-STINR具有明显优势。与PMF-STINR相比,PMF-STGR在重建更清晰图像且运动精度更高的同时,将重建时间减少了50%。随着效率和准确性的提高,PMF-STGR增强了动态CBCT成像在潜在临床转化中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e552/12499306/f75a8d31d3ed/nihpp-2503.22139v2-f0001.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验