Suppr超能文献

疟疾流行病学的概率综合分析:暴露、感染、寄生虫密度与检测

A Probabilistic Synthesis of Malaria Epidemiology: Exposure, Infection, Parasite Densities, and Detection.

作者信息

Henry John M, Carter Austin R, Wu Sean L, Smith David L

机构信息

College of the Environment, University of Washington, Seattle, WA, USA.

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA.

出版信息

medRxiv. 2025 Mar 25:2025.03.24.25324561. doi: 10.1101/2025.03.24.25324561.

Abstract

The epidemiology of Plasmodium falciparum malaria presents a unique set of challenges due to the complicated dynamics of infection, immunity, disease, and detection. Studies of malaria epidemiology commonly measure malaria parasite densities or prevalence, but since malaria is so complex with so many factors to consider, a complete mathematical synthesis of malaria epidemiology has been elusive. Here, we take a new approach. From a simple model of malaria exposure and infection in human cohorts as they age, we develop random variables describing the multiplicity of infection (MoI) and the age of infection (AoI). Next, using the MoI and AoI distributions, we develop random variables describing parasite densities, parasite counts, and detection. We also derived a random variable describing the age of the youngest infection (AoY), which can be used to compute approximate parasite densities in complex infections. Finally, we derive a simple system of differential equations with hybrid variables that track the mean MoI, AoI and AoY, and we show it matches the complex probabilistic system with reasonable accuracy. We can thus compute the state of any individual chosen at random from the population in two ways. The same approach - pairing random variables and hybrid models - can be extended to model other features of malaria epidemiology, including disease, malaria immunity, treatment and chemoprotection, and infectiousness. The computational simplicity of hybrid models has some advantages over compartmental models and stochastic individual-based models, and with the supporting probabilistic framework, provide a sound basis for a synthesis of observational malaria epidemiology.

摘要

由于感染、免疫、疾病和检测的动态过程复杂,恶性疟原虫疟疾的流行病学呈现出一系列独特的挑战。疟疾流行病学研究通常测量疟原虫密度或流行率,但由于疟疾非常复杂,需要考虑众多因素,因此疟疾流行病学的完整数学综合一直难以实现。在此,我们采用一种新方法。从人类队列中随着年龄增长的疟疾暴露和感染的简单模型出发,我们开发了描述感染复数(MoI)和感染年龄(AoI)的随机变量。接下来,利用MoI和AoI分布,我们开发了描述寄生虫密度、寄生虫计数和检测的随机变量。我们还推导了一个描述最年轻感染年龄(AoY)的随机变量,它可用于计算复杂感染中的近似寄生虫密度。最后,我们推导了一个带有混合变量的简单微分方程组,用于跟踪平均MoI、AoI和AoY,并表明它以合理的精度匹配复杂的概率系统。因此,我们可以通过两种方式计算从人群中随机选择的任何个体的状态。相同的方法——将随机变量与混合模型配对——可以扩展到对疟疾流行病学的其他特征进行建模,包括疾病、疟疾免疫、治疗和化学预防以及传染性。混合模型的计算简单性相对于隔室模型和基于个体的随机模型具有一些优势,并且在支持性概率框架的帮助下,为观察性疟疾流行病学的综合提供了坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2547/11974775/e19c48277505/nihpp-2025.03.24.25324561v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验