Yehorova Dariia, Alansson Nikolas, Shen Ruidan, Denson Joshua M, Robinson Michael, Risso Valeria A, Molina Nuria Ramirez, Loria J Patrick, Gaucher Eric A, Sanchez-Ruiz Jose M, Hengge Alvan C, Johnson Sean J, Kamerlin Shina C L
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA.
Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA.
bioRxiv. 2025 Mar 26:2025.03.26.645524. doi: 10.1101/2025.03.26.645524.
Protein tyrosine phosphatases (PTPs) are a family of enzymes that play important roles in regulating cellular signaling pathways. The activity of these enzymes is regulated by the motion of a catalytic loop that places a critical conserved aspartic acid side chain into the active site for acid-base catalysis upon loop closure. These enzymes also have a conserved phosphate binding loop that is typically highly rigid and forms a well-defined anion binding nest. The intimate links between loop dynamics and chemistry in these enzymes make PTPs an excellent model system for understanding the role of loop dynamics in protein function and evolution. In this context, archaeal PTPs, which have evolved in extremophilic organisms, are highly understudied, despite their unusual biophysical properties. We present here an engineered chimeric PTP (ShufPTP) generated by shuffling the amino acid sequence of five extant hyperthermophilic archaeal PTPs. Despite ShufPTP's high sequence similarity to its natural counterparts, ShufPTP presents a suite of unique properties, including high flexibility of the phosphate binding P-loop, facile oxidation of the active site cysteine, mechanistic promiscuity, and most notably, hyperthermostability, with a denaturation temperature likely >130 °C (>8°C higher than the highest recorded growth temperature of any archaeal strain). Our combined structural, biochemical, biophysical and computational analysis provides insight both into how small steps in evolutionary space can radically modulate the biophysical properties of an enzyme, and showcase the tremendous potential of archaeal enzymes for biotechnology, to generate novel enzymes capable of operating under extreme conditions.
蛋白酪氨酸磷酸酶(PTPs)是一类在调节细胞信号通路中起重要作用的酶。这些酶的活性通过催化环的运动来调节,当环闭合时,催化环会将一个关键的保守天冬氨酸侧链置于活性位点,用于酸碱催化。这些酶还具有一个保守的磷酸结合环,通常高度刚性,形成一个明确的阴离子结合巢。这些酶中环动力学与化学之间的紧密联系,使PTPs成为理解环动力学在蛋白质功能和进化中作用的优秀模型系统。在这种背景下,尽管古细菌PTPs具有不寻常的生物物理特性,但在极端嗜热生物中进化而来的它们却很少被研究。我们在此展示一种通过改组五个现存嗜热古细菌PTPs的氨基酸序列产生的工程嵌合PTP(ShufPTP)。尽管ShufPTP与其天然对应物具有高度的序列相似性,但它呈现出一系列独特的特性,包括磷酸结合P环的高灵活性、活性位点半胱氨酸的易氧化、机制混杂性,最显著的是超嗜热稳定性,其变性温度可能>130°C(比任何古细菌菌株记录的最高生长温度高>8°C)。我们结合的结构、生化、生物物理和计算分析,既深入了解了进化空间中的微小步骤如何从根本上调节酶的生物物理特性,又展示了古细菌酶在生物技术方面的巨大潜力,以产生能够在极端条件下运行的新型酶。