使用数据非依赖采集质谱法剖析耐药性BRAF突变型黑色素瘤中分支特异性未折叠蛋白反应激活情况
Dissecting Branch-Specific Unfolded Protein Response Activation in Drug-Tolerant BRAF-Mutant Melanoma using Data-Independent Acquisition Mass Spectrometry.
作者信息
Barny Lea A, Hermanson Jake N, Garcia Sarah K, Stauffer Philip E, Plate Lars
机构信息
Chemical and Physical Biology Program, Vanderbilt University Medical Center, Nashville, TN, 37235.
Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235.
出版信息
bioRxiv. 2025 Mar 24:2025.03.20.644425. doi: 10.1101/2025.03.20.644425.
Cells rely on the Unfolded Protein Response (UPR) to maintain ER protein homeostasis (proteostasis) when faced with elevated levels of misfolded and aggregated proteins. The UPR is comprised of three main branches-ATF6, IRE1, and PERK-that coordinate the synthesis of proteins involved in folding, trafficking, and degradation of nascent proteins to restore ER function. Dysregulation of the UPR is linked to numerous diseases, including neurodegenerative disorders, cancer, and diabetes. Despite its importance, identifying UPR targets has been challenging due to their heterogeneous induction, which varies by cell type and tissue. Additionally, defining the magnitude and range of UPR-regulated genes is difficult because of intricate temporal regulation, feedback between UPR branches, and extensive cross-talk with other stress-signaling pathways. To comprehensively identify UPR-regulated proteins and determine their branch specificity, we developed a data-independent acquisition (DIA) liquid-chromatography mass spectrometry (LC-MS) pipeline. Our optimized workflow improved identifications of low-abundant UPR proteins and leveraged an automated SP3-based protocol on the Biomek i5 liquid handler for label-free peptide preparation. Using engineered stable cell lines that enable selective pharmacological activation of each UPR branch without triggering global UPR activation, we identified branch-specific UPR proteomic targets. These targets were subsequently applied to investigate proteomic changes in multiple patient-derived BRAF-mutant melanoma cell lines treated with a BRAF inhibitor (PLX4720, i.e., vemurafenib). Our findings revealed differential regulation of the XBP1s branch of the UPR in the BRAF-mutant melanoma cell lines after PLX4720 treatment, likely due to calcium activation, suggesting that the UPR plays a role as a non-genetic mechanism of drug tolerance in melanoma. In conclusion, the validated branch-specific UPR proteomic targets identified in this study provide a robust framework for investigating this pathway across different cell types, drug treatments, and disease conditions in a high-throughput manner.
当面临错误折叠和聚集蛋白水平升高时,细胞依靠未折叠蛋白反应(UPR)来维持内质网蛋白稳态(蛋白质稳态)。UPR由三个主要分支组成——ATF6、IRE1和PERK——它们协调参与新生蛋白折叠、运输和降解的蛋白质合成,以恢复内质网功能。UPR失调与多种疾病相关,包括神经退行性疾病、癌症和糖尿病。尽管其很重要,但由于UPR靶点的诱导具有异质性,因细胞类型和组织而异,所以识别UPR靶点一直具有挑战性。此外,由于复杂的时间调控、UPR分支之间的反馈以及与其他应激信号通路的广泛相互作用,确定UPR调控基因的幅度和范围也很困难。为了全面识别UPR调控的蛋白质并确定其分支特异性,我们开发了一种数据非依赖采集(DIA)液相色谱质谱(LC-MS)流程。我们优化的工作流程改进了对低丰度UPR蛋白的识别,并在Biomek i5液体处理仪上利用基于SP3的自动化方案进行无标记肽制备。使用能够选择性药理激活每个UPR分支而不触发全局UPR激活的工程稳定细胞系,我们鉴定了分支特异性的UPR蛋白质组学靶点。随后将这些靶点应用于研究用BRAF抑制剂(PLX4720,即维罗非尼)处理的多个患者来源的BRAF突变黑色素瘤细胞系中的蛋白质组变化。我们的研究结果揭示了PLX4720处理后BRAF突变黑色素瘤细胞系中UPR的XBP1s分支的差异调控,这可能是由于钙激活,表明UPR在黑色素瘤中作为药物耐受性的非遗传机制发挥作用。总之,本研究中验证的分支特异性UPR蛋白质组学靶点为以高通量方式研究不同细胞类型、药物处理和疾病条件下的这一通路提供了一个强大的框架。