Suppr超能文献

用于表征从Labill.不同部位衍生的生物活性代谢物以管理阿尔茨海默病的机器学习工具。

Machine learning tools for the characterization of bioactive metabolites derived from different parts of Labill. for the management of Alzheimer's disease.

作者信息

Salem Mohamed A, Abdel-Sattar Essam, Mandour Asmaa A, El-Shiekh Riham A

机构信息

Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University Gamal Abd El Nasr St Shibin Elkom 32511 Menoufia Egypt

Pharmacognosy Department, Faculty of Pharmacy, Cairo University Kasr El Aini St, P. B. 11562 Cairo Egypt

出版信息

RSC Adv. 2025 Apr 7;15(14):10671-10690. doi: 10.1039/d5ra00021a. eCollection 2025 Apr 4.

Abstract

Currently, natural products are one of the most valuable resources for discovering novel chemical medicinal entities. A total of 41 compounds were tentatively identified from the stems, barks, roots, and fruits of Labill. using UPLC-MS/MS analysis. The binding affinities of these biomarkers for the active sites of acetyl- and butyryl-cholinesterase enzymes were further validated using molecular docking studies, which showed good results with (-)C-Docker interaction energy ranges of 30.17-86.73 and 26.81-72.42 (kcal mol), respectively. The most active predicted compound was a quercetin derivative [quercetin-3--rhamnosyl-(1-3)-rhamnosyl-(1-6)-hexoside, = -86.73, -72.42 kcal mol], which was subjected to dynamic simulation studies against the two enzymes to investigate the stability of the docked conformation. Root-mean-square fluctuations (RMSFs) showed values of 0.25-4.0 and 0.50-4.75 compared to free-state protein RMSF values of 0.25-4.5 and 0.5-7.5, revealing stable fluctuations over time after docking of this compound to AChE and BChE active pockets, respectively. AI in pharmacology can significantly improve patient outcomes and advance healthcare. Ligand binding or catalytic sites for AzrBmH21, AzrBmH22/3, and AzrBmH24/5 were predicted using a machine learning algorithm based on the Prank Web and DeepSite chemoinformatics tools. These findings will establish a scientific foundation for further investigations into the genus, particularly in relation to Alzheimer's disease.

摘要

目前,天然产物是发现新型化学药用实体最有价值的资源之一。通过超高效液相色谱-串联质谱(UPLC-MS/MS)分析,从Labill.的茎、皮、根和果实中初步鉴定出了41种化合物。使用分子对接研究进一步验证了这些生物标志物与乙酰胆碱酯酶和丁酰胆碱酯酶活性位点的结合亲和力,结果显示良好,(-)C-Docker相互作用能范围分别为30.17 - 86.73和26.81 - 72.42(千卡/摩尔)。预测活性最高的化合物是一种槲皮素衍生物[槲皮素-3--鼠李糖基-(1-3)-鼠李糖基-(1-6)-己糖苷,= -86.73,-72.42千卡/摩尔],对其针对这两种酶进行了动态模拟研究,以研究对接构象的稳定性。均方根波动(RMSFs)显示,与游离态蛋白质的RMSF值0.25 - 4.5和0.5 - 7.5相比,该化合物分别对接至乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE)活性口袋后随时间的波动稳定,值分别为0.25 - 4.0和0.50 - 4.75。药理学中的人工智能可以显著改善患者预后并推动医疗保健发展。使用基于Prank Web和DeepSite化学信息学工具的机器学习算法预测了AzrBmH21、AzrBmH22/3和AzrBmH24/5的配体结合或催化位点。这些发现将为进一步研究该属植物,特别是与阿尔茨海默病相关的研究奠定科学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4af7/11973551/b4a6c9faa075/d5ra00021a-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验