Suppr超能文献

使用3D卷积神经网络和Corvis ST角膜动态视频检测亚临床圆锥角膜

Using 3D Convolutional Neural Network and Corvis ST Corneal Dynamic Video for Detecting Forme Fruste Keratoconus.

作者信息

Rong Hua, Liu Guihua, Wang Yanling, Hu Jiamei, Sun Ziwen, Gao Nan, Kee Chea-Su, Du Bei, Wei Ruihua

出版信息

J Refract Surg. 2025 Apr;41(4):e356-e364. doi: 10.3928/1081597X-20250226-01. Epub 2025 Apr 1.

Abstract

PURPOSE

To evaluate the performance of a three-dimensional convolutional neural network (3D CNN) in detecting forme fruste keratoconus (FFKC).

METHODS

A total of 415 anonymized corneal dynamic videos were collected for this study. The video dataset consisted of 150 patients with FFKC (150 videos) and 265 normal patients (265 videos). These patients underwent comprehensive ocular examinations, including slit lamp, Pentacam (Oculus Optikgeräte GmbH), and Corvis ST (Oculus Optikgeräte GmbH), and were classified by corneal experts. A 3D CNN-based algorithm was developed to establish a FFKC detection model. The performance of the model was evaluated using metrics such as accuracy, area under the receiver operating characteristic curve (AUC), confusion matrices, and F1 score. Gradient-weighted class activation mapping (Grad-CAM) was used to observe the regions that the model attended to.

RESULTS

In the test dataset, the model achieved an accuracy of 87.95% in identifying FFKC. The ResNet3D-AUC was 0.95 with a cut-off value of 0.49, and the F1 value was 0.85. The sensitivity was 83.33% and the specificity was 90.57%.

CONCLUSIONS

Combining 3D CNN with Corvis ST corneal dynamic videos provides a new method for distinguishing between FFKC and normal corneas. This could offer valuable clinical insights and recommendations for detecting FFKC. Nevertheless, the generalizability of the model is still a concern, and external validation is required prior to its clinical implementation. .

摘要

目的

评估三维卷积神经网络(3D CNN)在检测圆锥角膜 forme fruste(FFKC)中的性能。

方法

本研究共收集了415份匿名角膜动态视频。视频数据集包括150例FFKC患者(150个视频)和265例正常患者(265个视频)。这些患者接受了包括裂隙灯、Pentacam(Oculus Optikgeräte GmbH)和Corvis ST(Oculus Optikgeräte GmbH)在内的全面眼部检查,并由角膜专家进行分类。开发了一种基于3D CNN的算法来建立FFKC检测模型。使用准确率、受试者操作特征曲线下面积(AUC)、混淆矩阵和F1分数等指标评估模型的性能。采用梯度加权类激活映射(Grad-CAM)来观察模型关注的区域。

结果

在测试数据集中,该模型在识别FFKC方面的准确率达到87.95%。ResNet3D-AUC为0.95,截断值为0.49,F1值为0.85。敏感性为83.33%,特异性为90.57%。

结论

将3D CNN与Corvis ST角膜动态视频相结合为区分FFKC和正常角膜提供了一种新方法。这可为FFKC的检测提供有价值的临床见解和建议。然而,该模型的通用性仍令人担忧,在临床应用前需要进行外部验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验