School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Comput Biol Med. 2024 Apr;172:108286. doi: 10.1016/j.compbiomed.2024.108286. Epub 2024 Mar 13.
To ascertain whether the integration of raw Corvis ST data with an end-to-end CNN can enhance the diagnosis of keratoconus (KC).
The Corvis ST is a non-contact device for in vivo measurement of corneal biomechanics. The CorNet was trained and validated on a dataset consisting of 1786 Corvis ST raw data from 1112 normal eyes and 674 KC eyes. Each raw data consists of the anterior and posterior corneal surface elevation during air-puff induced dynamic deformation. The architecture of CorNet utilizes four ResNet-inspired convolutional structures that employ 1 × 1 convolution in identity mapping. Gradient-weighted Class Activation Mapping (Grad-CAM) was adopted to visualize the attention allocation to diagnostic areas. Discriminative performance was assessed using metrics including the AUC of ROC curve, sensitivity, specificity, precision, accuracy, and F1 score.
CorNet demonstrated outstanding performance in distinguishing KC from normal eyes, achieving an AUC of 0.971 (sensitivity: 92.49%, specificity: 91.54%) in the validation set, outperforming the best existing Corvis ST parameters, namely the Corvis Biomechanical Index (CBI) with an AUC of 0.947, and its updated version for Chinese populations (cCBI) with an AUC of 0.963. Though the ROC curve analysis showed no significant difference between CorNet and cCBI (p = 0.295), it indicated a notable difference between CorNet and CBI (p = 0.011). The Grad-CAM visualizations highlighted the significance of corneal deformation data during the loading phase rather than the unloading phase for KC diagnosis.
This study proposed an end-to-end CNN approach utilizing raw biomechanical data by Corvis ST for KC detection, showing effectiveness comparable to or surpassing existing parameters provided by Corvis ST. The CorNet, autonomously learning comprehensive temporal and spatial features, demonstrated a promising performance for advancing KC diagnosis in ophthalmology.
确定将 Corvis ST 原始数据与端到端卷积神经网络(CNN)集成是否可以提高对圆锥角膜(KC)的诊断能力。
Corvis ST 是一种用于活体测量角膜生物力学的非接触式设备。CorNet 是在由 1112 只正常眼和 674 只 KC 眼的 1786 个 Corvis ST 原始数据组成的数据集上进行训练和验证的。每个原始数据由空气脉冲引起的动态变形过程中前、后角膜表面的高程组成。CorNet 的架构利用了四个受 ResNet 启发的卷积结构,这些结构在身份映射中采用 1×1 卷积。采用梯度加权类激活映射(Grad-CAM)来可视化对诊断区域的注意力分配。使用包括 ROC 曲线的 AUC、敏感性、特异性、精确性、准确性和 F1 分数在内的指标来评估判别性能。
CorNet 在区分 KC 和正常眼方面表现出色,在验证集上的 AUC 为 0.971(敏感性:92.49%,特异性:91.54%),优于现有的最佳 Corvis ST 参数,即 Corvis 生物力学指数(CBI),其 AUC 为 0.947,以及针对中国人群的更新版本(cCBI),其 AUC 为 0.963。虽然 ROC 曲线分析表明 CorNet 和 cCBI 之间没有显著差异(p=0.295),但表明 CorNet 和 CBI 之间存在显著差异(p=0.011)。Grad-CAM 可视化突出了角膜变形数据在加载阶段而不是卸载阶段对于 KC 诊断的重要性。
本研究提出了一种利用 Corvis ST 原始生物力学数据的端到端 CNN 方法用于 KC 检测,其有效性可与 Corvis ST 提供的现有参数相媲美或超过。CorNet 自主学习全面的时空特征,为推进眼科 KC 诊断提供了有前景的性能。