Suppr超能文献

关于应用大语言模型支持癌症护理与研究的叙述性综述。

A Narrative Review on the Application of Large Language Models to Support Cancer Care and Research.

作者信息

Benson Ryzen, Elia Marianna, Hyams Benjamin, Chang Ji Hyun, Hong Julian C

机构信息

Department of Radiation Oncology, University of California, San Francisco, San Francisco, California.

Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California.

出版信息

Yearb Med Inform. 2024 Aug;33(1):90-98. doi: 10.1055/s-0044-1800726. Epub 2025 Apr 8.

Abstract

OBJECTIVES

The emergence of large language models has resulted in a significant shift in informatics research and carries promise in clinical cancer care. Here we provide a narrative review of the recent use of large language models (LLMs) to support cancer care, prevention, and research.

METHODS

We performed a search of the Scopus database for studies on the application of bidirectional encoder representations from transformers (BERT) and generative-pretrained transformer (GPT) LLMs in cancer care published between the start of 2021 and the end of 2023. We present salient and impactful papers related to each of these themes.

RESULTS

Studies identified focused on aspects of clinical decision support (CDS), cancer education, and support for research activities. The use of LLMs for CDS primarily focused on aspects of treatment and screening planning, treatment response, and the management of adverse events. Studies using LLMs for cancer education typically focused on question-answering, assessing cancer myths and misconceptions, and text summarization and simplification. Finally, studies using LLMs to support research activities focused on scientific writing and idea generation, cohort identification and extraction, clinical data processing, and NLP-centric tasks.

CONCLUSIONS

The application of LLMs in cancer care has shown promise across a variety of diverse use cases. Future research should utilize quantitative metrics, qualitative insights, and user insights in the development and evaluation of LLM-based cancer care tools. The development of open-source LLMs for use in cancer care research and activities should also be a priority.

摘要

目的

大语言模型的出现导致了信息学研究的重大转变,并为临床癌症护理带来了希望。在此,我们对近期使用大语言模型(LLMs)来支持癌症护理、预防和研究进行了叙述性综述。

方法

我们在Scopus数据库中搜索了2021年初至2023年底发表的关于基于变换器的双向编码器表征(BERT)和生成式预训练变换器(GPT)大语言模型在癌症护理中应用的研究。我们展示了与每个主题相关的突出且有影响力的论文。

结果

确定的研究集中在临床决策支持(CDS)、癌症教育以及对研究活动的支持等方面。大语言模型在临床决策支持中的应用主要集中在治疗和筛查计划、治疗反应以及不良事件管理等方面。使用大语言模型进行癌症教育的研究通常集中在问答、评估癌症谣言和误解以及文本总结与简化方面。最后,使用大语言模型支持研究活动的研究集中在科学写作与想法生成、队列识别与提取、临床数据处理以及以自然语言处理为中心的任务方面。

结论

大语言模型在癌症护理中的应用在各种不同用例中都显示出了希望。未来的研究应在基于大语言模型的癌症护理工具的开发和评估中利用定量指标、定性见解和用户见解。开发用于癌症护理研究和活动的开源大语言模型也应成为优先事项。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a639/12020524/c3504a9d0b66/10-1055-s-0044-1800726-ibenson-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验