Suppr超能文献

用于评估治疗延迟的因果多状态模型

Causal Multistate Models to Evaluate Treatment Delay.

作者信息

Prosepe Ilaria, le Cessie Saskia, Putter Hein, van Geloven Nan

机构信息

Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.

出版信息

Stat Med. 2025 Mar 30;44(7):e70061. doi: 10.1002/sim.70061.

Abstract

Multistate models allow for the study of scenarios where individuals experience different events over time. While effective for descriptive and predictive purposes, multistate models are not typically used for causal inference. We propose an estimator that combines a multistate model with g-computation to estimate the causal effect of treatment delay strategies. In particular, we estimate the impact of strategies such as awaiting natural recovery for 3 months, on the marginal probability of recovery. We use an illness-death model, where illness and death represent, respectively, treatment and recovery. We formulate the causal assumptions needed for identification and the modeling assumptions needed to estimate the quantities of interest. In a simulation study, we present scenarios where the proposed method can make more efficient use of data compared to an alternative approach using cloning-censoring-reweighting. We then showcase the proposed methodology on real data by estimating the effect of treatment delay on a cohort of 1896 couples with unexplained subfertility who seek intrauterine insemination.

摘要

多状态模型允许研究个体随时间经历不同事件的情景。虽然多状态模型在描述性和预测性目的方面很有效,但通常不用于因果推断。我们提出了一种估计器,它将多状态模型与g计算相结合,以估计治疗延迟策略的因果效应。具体而言,我们估计诸如等待自然恢复3个月等策略对恢复的边际概率的影响。我们使用一种疾病-死亡模型,其中疾病和死亡分别代表治疗和恢复。我们阐述了识别所需的因果假设以及估计感兴趣数量所需的建模假设。在一项模拟研究中,我们展示了与使用克隆-删失-重新加权的替代方法相比,所提出的方法可以更有效地利用数据的情景。然后,我们通过估计治疗延迟对1896对寻求宫内人工授精的不明原因不育夫妇队列的影响,在真实数据上展示了所提出的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9eb/11978571/a77e33d5184a/SIM-44-0-g002.jpg

相似文献

1
Causal Multistate Models to Evaluate Treatment Delay.
Stat Med. 2025 Mar 30;44(7):e70061. doi: 10.1002/sim.70061.
2
A connection between survival multistate models and causal inference for external treatment interruptions.
Stat Methods Med Res. 2023 Feb;32(2):267-286. doi: 10.1177/09622802221133551. Epub 2022 Dec 4.
3
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
7
Multiply robust estimation of causal quantile treatment effects.
Stat Med. 2020 Dec 10;39(28):4238-4251. doi: 10.1002/sim.8722. Epub 2020 Aug 28.
8
Doubly-robust methods for differences in restricted mean lifetimes using pseudo-observations.
Pharm Stat. 2022 Nov;21(6):1185-1198. doi: 10.1002/pst.2223. Epub 2022 May 7.
9
10
A test for the correct specification of marginal structural models.
Stat Med. 2019 Jul 30;38(17):3168-3183. doi: 10.1002/sim.8132. Epub 2019 Mar 11.

本文引用的文献

1
A multistate approach for the study of interventions on an intermediate time-to-event in health disparities research.
Stat Methods Med Res. 2023 Aug;32(8):1445-1460. doi: 10.1177/09622802231163331. Epub 2023 Apr 20.
2
A comparison of different methods to adjust survival curves for confounders.
Stat Med. 2023 May 10;42(10):1461-1479. doi: 10.1002/sim.9681. Epub 2023 Feb 7.
4
A connection between survival multistate models and causal inference for external treatment interruptions.
Stat Methods Med Res. 2023 Feb;32(2):267-286. doi: 10.1177/09622802221133551. Epub 2022 Dec 4.
5
Formulating causal questions and principled statistical answers.
Stat Med. 2020 Dec 30;39(30):4922-4948. doi: 10.1002/sim.8741. Epub 2020 Sep 23.
7
A causal framework for classical statistical estimands in failure-time settings with competing events.
Stat Med. 2020 Apr 15;39(8):1199-1236. doi: 10.1002/sim.8471. Epub 2020 Jan 27.
8
Using simulation studies to evaluate statistical methods.
Stat Med. 2019 May 20;38(11):2074-2102. doi: 10.1002/sim.8086. Epub 2019 Jan 16.
9
Is IUI with ovarian stimulation effective in couples with unexplained subfertility?
Hum Reprod. 2019 Jan 1;34(1):84-91. doi: 10.1093/humrep/dey329.
10
The C-Word: Scientific Euphemisms Do Not Improve Causal Inference From Observational Data.
Am J Public Health. 2018 May;108(5):616-619. doi: 10.2105/AJPH.2018.304337. Epub 2018 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验