Prosepe Ilaria, le Cessie Saskia, Putter Hein, van Geloven Nan
Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands.
Stat Med. 2025 Mar 30;44(7):e70061. doi: 10.1002/sim.70061.
Multistate models allow for the study of scenarios where individuals experience different events over time. While effective for descriptive and predictive purposes, multistate models are not typically used for causal inference. We propose an estimator that combines a multistate model with g-computation to estimate the causal effect of treatment delay strategies. In particular, we estimate the impact of strategies such as awaiting natural recovery for 3 months, on the marginal probability of recovery. We use an illness-death model, where illness and death represent, respectively, treatment and recovery. We formulate the causal assumptions needed for identification and the modeling assumptions needed to estimate the quantities of interest. In a simulation study, we present scenarios where the proposed method can make more efficient use of data compared to an alternative approach using cloning-censoring-reweighting. We then showcase the proposed methodology on real data by estimating the effect of treatment delay on a cohort of 1896 couples with unexplained subfertility who seek intrauterine insemination.
多状态模型允许研究个体随时间经历不同事件的情景。虽然多状态模型在描述性和预测性目的方面很有效,但通常不用于因果推断。我们提出了一种估计器,它将多状态模型与g计算相结合,以估计治疗延迟策略的因果效应。具体而言,我们估计诸如等待自然恢复3个月等策略对恢复的边际概率的影响。我们使用一种疾病-死亡模型,其中疾病和死亡分别代表治疗和恢复。我们阐述了识别所需的因果假设以及估计感兴趣数量所需的建模假设。在一项模拟研究中,我们展示了与使用克隆-删失-重新加权的替代方法相比,所提出的方法可以更有效地利用数据的情景。然后,我们通过估计治疗延迟对1896对寻求宫内人工授精的不明原因不育夫妇队列的影响,在真实数据上展示了所提出的方法。