Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA.
Universite de Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, Bordeaux, France.
Stat Methods Med Res. 2023 Aug;32(8):1445-1460. doi: 10.1177/09622802231163331. Epub 2023 Apr 20.
We propose a novel methodology to quantify the effect of stochastic interventions for a non-terminal intermediate time-to-event on a terminal time-to-event outcome. Investigating these effects is particularly important in health disparities research when we seek to quantify inequities in the timely delivery of treatment and its impact on patients' survival time. Current approaches fail to account for time-to-event intermediates and semi-competing risks arising in this setting. Under the potential outcome framework, we define causal contrasts relevant in health disparities research and provide identifiability conditions when stochastic interventions on an intermediate non-terminal time-to-event are of interest. Causal contrasts are estimated in continuous time within a multistate modeling framework and analytic formulae for the estimators of the causal contrasts are developed. We show via simulations that ignoring censoring in intermediate and/or terminal time-to-event processes or ignoring semi-competing risks may give misleading results. This work demonstrates that a rigorous definition of the causal effects and joint estimation of the terminal outcome and intermediate non-terminal time-to-event distributions are crucial for valid investigation of interventions and mechanisms in continuous time. We employ this novel methodology to investigate the role of delaying treatment uptake in explaining racial disparities in cancer survival in a cohort study of colon cancer patients.
我们提出了一种新的方法来量化非终期事件时间到事件对终期事件时间结果的随机干预的影响。当我们试图量化治疗及时性方面的不平等及其对患者生存时间的影响时,这种效应的研究在健康差异研究中尤为重要。当前的方法无法在这种情况下考虑到事件时间中介和半竞争风险。在潜在结果框架下,我们定义了健康差异研究中相关的因果对比,并在对中间非终期事件时间的随机干预感兴趣时提供了可识别性条件。因果对比在多状态建模框架内以连续时间进行估计,并为因果对比的估计量开发了分析公式。我们通过模拟表明,忽略中间和/或终期事件时间过程中的删失或忽略半竞争风险可能会导致误导性结果。这项工作表明,严格定义因果效应并联合估计终期结果和中间非终期时间到事件分布对于在连续时间内对干预措施和机制进行有效调查至关重要。我们采用这种新的方法来研究延迟治疗接受在解释结肠癌患者队列研究中癌症生存的种族差异中的作用。