Suppr超能文献

一种用于随机临床试验中协变量调整的G计算稳健得分检验,通过影响函数利用不同的方差估计器。

A Robust Score Test in G-Computation for Covariate Adjustment in Randomized Clinical Trials Leveraging Different Variance Estimators via Influence Functions.

作者信息

Zhang Xin, Chu Haitao, Liu Lin, Roychoudhury Satrajit

机构信息

Data Sciences and Analytics, Pfizer Inc, Shanghai, China.

Data Sciences and Analytics, Pfizer Inc, New York, NY, USA.

出版信息

Stat Med. 2025 Mar 30;44(7):e70080. doi: 10.1002/sim.70080.

Abstract

G-computation has become a widely used robust method for estimating unconditional (marginal) treatment effects with covariate adjustment in the analysis of randomized clinical trials. Statistical inference in this context typically relies on the Wald test or Wald interval, which can be easily implemented using a consistent variance estimator. However, existing literature suggests that when sample sizes are small or when parameters of interest are near boundary values, Wald-based methods may be less reliable due to type I error rate inflation and insufficient interval coverage. In this article, we propose a robust score test for g-computation estimators in the context of two-sample treatment comparisons. The proposed test is asymptotically valid under simple and stratified (biased-coin) randomization schemes, even when regression models are misspecified. These test statistics can be conveniently computed using existing variance estimators, and the corresponding confidence intervals have closed-form expressions, making them convenient to implement. Through extensive simulations, we demonstrate the superior finite-sample performance of the proposed method. Finally, we apply the proposed method to reanalyze a completed randomized clinical trial. The new analysis using our proposed score test achieves statistical significance, whilst reducing the issue of type I error inflation.

摘要

在随机临床试验分析中,G计算已成为一种广泛使用的稳健方法,用于在协变量调整的情况下估计无条件(边际)治疗效果。在此背景下的统计推断通常依赖于 Wald 检验或 Wald 区间,使用一致的方差估计器可以轻松实现。然而,现有文献表明,当样本量较小时或当感兴趣的参数接近边界值时,基于 Wald 的方法可能不太可靠,因为会出现 I 型错误率膨胀和区间覆盖不足的情况。在本文中,我们针对两样本治疗比较的情况,为 G 计算估计量提出了一种稳健的得分检验。即使回归模型设定错误,所提出的检验在简单随机化和分层(偏硬币)随机化方案下渐近有效。这些检验统计量可以使用现有的方差估计器方便地计算,并且相应的置信区间具有封闭形式的表达式,便于实施。通过广泛的模拟,我们证明了所提出方法具有优异的有限样本性能。最后,我们应用所提出的方法重新分析一项已完成的随机临床试验。使用我们提出的得分检验进行的新分析达到了统计学显著性,同时减少了 I 型错误膨胀的问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验