Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.
Stat Methods Med Res. 2024 Sep;33(9):1497-1516. doi: 10.1177/09622802241248382. Epub 2024 May 29.
Linear mixed models are commonly used in analyzing stepped-wedge cluster randomized trials. A key consideration for analyzing a stepped-wedge cluster randomized trial is accounting for the potentially complex correlation structure, which can be achieved by specifying random-effects. The simplest random effects structure is random intercept but more complex structures such as random cluster-by-period, discrete-time decay, and more recently, the random intervention structure, have been proposed. Specifying appropriate random effects in practice can be challenging: assuming more complex correlation structures may be reasonable but they are vulnerable to computational challenges. To circumvent these challenges, robust variance estimators may be applied to linear mixed models to provide consistent estimators of standard errors of fixed effect parameters in the presence of random-effects misspecification. However, there has been no empirical investigation of robust variance estimators for stepped-wedge cluster randomized trials. In this article, we review six robust variance estimators (both standard and small-sample bias-corrected robust variance estimators) that are available for linear mixed models in R, and then describe a comprehensive simulation study to examine the performance of these robust variance estimators for stepped-wedge cluster randomized trials with a continuous outcome under different data generators. For each data generator, we investigate whether the use of a robust variance estimator with either the random intercept model or the random cluster-by-period model is sufficient to provide valid statistical inference for fixed effect parameters, when these working models are subject to random-effect misspecification. Our results indicate that the random intercept and random cluster-by-period models with robust variance estimators performed adequately. The CR3 robust variance estimator (approximate jackknife) estimator, coupled with the number of clusters minus two degrees of freedom correction, consistently gave the best coverage results, but could be slightly conservative when the number of clusters was below 16. We summarize the implications of our results for the linear mixed model analysis of stepped-wedge cluster randomized trials and offer some practical recommendations on the choice of the analytic model.
线性混合模型常用于分析阶梯式楔形群随机试验。分析阶梯式楔形群随机试验的一个关键考虑因素是考虑潜在的复杂相关结构,可以通过指定随机效应来实现。最简单的随机效应结构是随机截距,但更复杂的结构,如随机聚类-时期、离散时间衰减,以及最近提出的随机干预结构,已经被提出。在实践中指定适当的随机效应可能具有挑战性:假设更复杂的相关结构可能是合理的,但它们容易受到计算挑战的影响。为了规避这些挑战,可以将稳健方差估计应用于线性混合模型,以在存在随机效应误指定的情况下为固定效应参数的标准误差提供一致的估计值。然而,对于阶梯式楔形群随机试验,还没有稳健方差估计的实证研究。在本文中,我们回顾了 R 中可用的六种稳健方差估计量(标准稳健方差估计量和小样本偏倚校正稳健方差估计量),然后描述了一项全面的模拟研究,以检验这些稳健方差估计量在不同数据生成器下用于连续结果的阶梯式楔形群随机试验的性能。对于每个数据生成器,我们研究了当这些工作模型存在随机效应误指定时,使用随机截距模型或随机聚类-时期模型的稳健方差估计量是否足以提供固定效应参数的有效统计推断。我们的结果表明,随机截距和随机聚类-时期模型与稳健方差估计量的性能足够好。CR3 稳健方差估计量(近似刀切)估计量与减去两个自由度校正的聚类数相结合,始终给出最佳的覆盖结果,但当聚类数低于 16 时,可能会略有保守。我们总结了我们的结果对阶梯式楔形群随机试验线性混合模型分析的影响,并就分析模型的选择提供了一些实用建议。