Mei Xinyi, Wang Guoliang, Qiu Junming, Qi Ziwei, Zhang Mingxu, Yu Mei, Liu Jianhua, Zhang Xiaoliang
School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
Small. 2025 Jun;21(22):e2500007. doi: 10.1002/smll.202500007. Epub 2025 Apr 9.
Inorganic CsPbI perovskite quantum dots (PQDs) demonstrate high potential for new-generation photovoltaics, but the imbalanced surface stress of PQDs induced by ligand deficiency and incompatibility significantly deteriorates their optoelectronic properties and phase stability, restricting their photovoltaic performance. Herein, a surface lattice regularization strategy is proposed for the surface stress engineering of PQDs, in which a series of onium cations with appropriate dimensions and good affinity with the surface lattice of PQDs are introduced into the surface lattice of PQDs, resulting in substantially ameliorated optoelectronic properties and phase stability of PQDs. Meanwhile, with surface stress engineering, the PQD solid with enhanced stacking orientation is constructed, facilitating charge carrier transport. Consequently, the PQD solar cell with an efficiency of up to 17.01% is obtained, which is one of the highest values of inorganic PQD solar cells. Such a strategy provides feasible access to maximize the optoelectronic properties of PQDs for high-performance optoelectronics.
无机CsPbI钙钛矿量子点(PQDs)在新一代光伏领域展现出巨大潜力,但配体不足和不相容性导致的PQDs表面应力失衡显著恶化了其光电性能和相稳定性,限制了它们的光伏性能。在此,提出了一种用于PQDs表面应力工程的表面晶格正则化策略,其中将一系列尺寸合适且与PQDs表面晶格具有良好亲和力的鎓阳离子引入到PQDs的表面晶格中,从而使PQDs的光电性能和相稳定性得到显著改善。同时,通过表面应力工程,构建了具有增强堆积取向的PQD固体,促进了电荷载流子传输。因此,获得了效率高达17.01%的PQD太阳能电池,这是无机PQD太阳能电池的最高值之一。这种策略为最大化PQDs的光电性能以用于高性能光电子学提供了可行途径。