Ramchandani Manish, Goyal Amit Kumar
Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Ajmer, India.
J Biomol Struct Dyn. 2025 Apr 9:1-15. doi: 10.1080/07391102.2025.2484663.
Deucravacitinib (Sotyktu) stands out as a novel and highly specific oral inhibitor targeting tyrosine kinase 2 (TYK2). Its mechanism of action involves an allosteric binding, to catalytically inactive pseudokinase domain of TYK2, this stabilizes an inhibitory contact between the catalytic and regulatory domains. This inhibition of Janus kinase (JAK) is associated with suppression of cytokine signaling using diverse molecules defining wide importance in current research. In our recent investigation, we examined the selectivity of the TYK2JH2 inhibitor, deucravacitinib, against four JAK kinases (JAK1, JAK2, JAK3, TYK2) and TYK2 pseudokinases utilizing a merged approach involving molecular docking, molecular dynamics analysis (300 ns), and binding free energy calculation through the molecular mechanics Poisson - Boltzmann surface area (MM-PBSA) scheme. The results obtained indicate that deucravacitinib effectively interacts with the ATP-binding site of four JAK kinases and TYK2 pseudokinase through hydrogen bond formation, electrostatic attraction, and notably, van der Waals interaction. We found the calculated binding affinity demonstrates a reduction in the TYK2JH2-deucravacitinib complex due to an increased favorable intermolecular electrostatic contribution. Consequently, deucravacitinib exhibits greater selectivity for the TYK2 pseudokinase domain compared to the other four JAKs. Moreover, the interaction with DPG motif residues and the hinge region contributed to the stabilization of deucravacitinib through robustly formed hydrogen bonds. The interaction with the hydrophobic catalytic region caused the ATP-binding site to adopt a closed conformation, thereby minimizing protein movement at the glycine loop of the JAK pseudokinase protein. In summary, our study holds significant potential for informing the strategic design of TYK2 inhibitors with enhanced affinity.
氘可来昔替尼(Sotyktu)是一种新型且高度特异性的口服酪氨酸激酶2(TYK2)抑制剂。其作用机制涉及变构结合至TYK2的催化无活性假激酶结构域,这稳定了催化结构域和调节结构域之间的抑制性接触。这种对Janus激酶(JAK)的抑制与使用多种在当前研究中具有广泛重要性的分子对细胞因子信号传导的抑制相关。在我们最近的研究中,我们采用了一种融合方法,包括分子对接、分子动力学分析(300纳秒)以及通过分子力学泊松-玻尔兹曼表面积(MM-PBSA)方案计算结合自由能,来研究TYK2 JH2抑制剂氘可来昔替尼对四种JAK激酶(JAK1、JAK2、JAK3、TYK2)和TYK2假激酶的选择性。所得结果表明,氘可来昔替尼通过氢键形成、静电吸引以及显著的范德华相互作用,有效地与四种JAK激酶和TYK2假激酶的ATP结合位点相互作用。我们发现,由于分子间静电贡献增加,计算得到的结合亲和力显示TYK2 JH2-氘可来昔替尼复合物有所降低。因此,与其他四种JAK相比,氘可来昔替尼对TYK2假激酶结构域表现出更高的选择性。此外,与DPG基序残基和铰链区的相互作用通过牢固形成的氢键有助于氘可来昔替尼的稳定。与疏水催化区域的相互作用导致ATP结合位点采取封闭构象,从而使JAK假激酶蛋白甘氨酸环处的蛋白质运动最小化。总之,我们的研究在为具有增强亲和力的TYK2抑制剂的战略设计提供信息方面具有巨大潜力。