Zhang Zhihui, Chen Zehui, Liu Tao, Zhang Limin
Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Dongchuan Road 500 Shanghai 200241 China
Chem Sci. 2025 Mar 31;16(18):7963-7970. doi: 10.1039/d5sc01609f. eCollection 2025 May 7.
The exploration of new interfaces for analysis holds great promise for electrochemical acquisition of chemical signals involved in brain events. In this study, we designed and created an implantable electrode using a liquid/liquid (L/L) interface concept to monitor variations of K in the living brain. Poly(1-butyl-3-vinylimidazolium bis(trifluoro-methylsulfonyl)imide) (PB) and an ionic liquid of 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide (CM) were optimized to form a uniform ionic liquid gel (ILG), which exhibits a wide potential window and remarkably enhances interfacial mechanical stability. Furthermore, the specific ionophore [2.2.3]-triazacryptand (TAC) was optimized and incorporated into the ILG (ILG-TAC) to molecularly tailor the micro-interface between the gel phase and water phase. The developed implantable ILG-TAC electrode demonstrated high selectivity for K, and good anti-biofouling capability with a signal deviation less than 8.5% over 50 days of continuous implantation. This ion-transfer-based sensing strategy introduces a novel approach for analysis, especially beneficial for detecting redox inactive species.
探索用于分析的新界面对于电化学获取大脑活动中涉及的化学信号具有巨大潜力。在本研究中,我们利用液/液(L/L)界面概念设计并制造了一种可植入电极,用于监测活体大脑中钾离子的变化。优化了聚(1-丁基-3-乙烯基咪唑鎓双(三氟甲基磺酰)亚胺)(PB)和1-癸基-3-甲基咪唑鎓双(三氟甲磺酰)亚胺(CM)离子液体,以形成均匀的离子液体凝胶(ILG),其具有宽电位窗口并显著提高界面机械稳定性。此外,对特定离子载体[2.2.3]-三氮杂穴醚(TAC)进行了优化并将其掺入ILG(ILG-TAC)中,以分子方式调整凝胶相和水相之间的微界面。所开发的可植入ILG-TAC电极对钾离子具有高选择性,并且具有良好的抗生物污损能力,在连续植入50天内信号偏差小于8.5%。这种基于离子转移的传感策略引入了一种新的分析方法,特别有利于检测氧化还原惰性物质。