Freytag Clara, Schuster Christin, Parth Emil, Denier van der Gon Dido, Saito Takeshi, Yanagi Kazuhiro, Ayala Paola, Pichler Thomas
University of Vienna, Faculty of Physics, Boltzmanngasse 5, Vienna, 1090, Austria.
National Institute of Advanced Industrial Science and Technology (AIST), Nanomaterials Research Institute, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
Small Methods. 2025 Apr 9:e2500075. doi: 10.1002/smtd.202500075.
Confined carbyne, an sp-hybridized linear carbon chain inside a carbon nanotube, is a novel material with remarkable properties and potential applications. Among its currently successful synthesis methods, high temperature high vacuum annealing is prevalent. Further optimization could be achieved by tuning the synthesis pathway. Here, a systematic analysis of key synthesis parameters including precursor filling, annealing step sequences, and temperature conditions during high temperature vacuum processing is performed. A novel yield determination model that overcomes previous limitations related to the irregular resonance Raman behavior of carbyne is applied to evaluate bulk yield and realized growth potential. With this refined model, it is possible to make a quantitative assessment of bulk yield optimization potential in multi-step annealing processes. These results provide crucial insights into the fundamental formation mechanisms of confined carbyne, advancing our understanding of this promising hybrid nanomaterial system. It is therefore possible to establish improved protocols for maximizing confined carbyne yields through precise control of synthesis conditions.
受限卡宾是一种存在于碳纳米管内部的sp杂化线性碳链,是一种具有卓越性能和潜在应用价值的新型材料。在其目前成功的合成方法中,高温高真空退火较为普遍。通过调整合成途径可以实现进一步优化。在此,对高温真空处理过程中的关键合成参数进行了系统分析,包括前驱体填充、退火步骤顺序和温度条件。应用一种克服了以往与卡宾不规则共振拉曼行为相关限制的新型产率测定模型来评估整体产率并实现生长潜力。借助这个改进的模型,可以对多步退火过程中的整体产率优化潜力进行定量评估。这些结果为受限卡宾的基本形成机制提供了关键见解,增进了我们对这个有前景的混合纳米材料系统的理解。因此,通过精确控制合成条件来建立提高受限卡宾产率的改进方案是可行的。