Suppr超能文献

整合行政索赔数据与临床数据以推动肿瘤学领域真实世界证据的生成。

Integration of administrative claims and clinical data to advance real-world evidence generation in oncology.

作者信息

Nguyen Chi, Zheng Hanke, Grabner Michael, Barron John, Dixon Ruth Wangia, Cziraky Mark, Sweet Brian, Hill Nathan

机构信息

Carelon Research, Wilmington, DE, USA.

Bristol Myers Squibb, Lawrenceville, NJ, USA.

出版信息

Curr Med Res Opin. 2025 Apr;41(4):671-681. doi: 10.1080/03007995.2025.2482665. Epub 2025 Apr 9.

Abstract

OBJECTIVE

The objective of this study is to evaluate capabilities of the Generating Evidence Excellence (GEx) research environment using Non-Small Cell Lung Cancer (NSCLC) as a use-case.

METHODS

Patients with incident NSCLC were identified in GEx from 01/01/2015 to 12/31/2019. Two GEx data containers were used: (1) claims from the Healthcare Integrated Research Database (HIRD) linked to clinical data from a Cancer Care Quality Program (CCQP) (HIRD+CCQP); (2) claims data from the HIRD and a second large commercially insured claims dataset (CD2) linked to electronic medical records from IntrinsiQ Specialty Solutions (IQSS) (HIRD+CD2 + IQSS). Patient demographics and all-cause mortality were contrasted with the American Community Survey and the United States Cancer Statistics (USCS) public use database. Descriptive analyses were completed SAS Enterprise Guide 7.12 and SEER*stat.

RESULTS

The study sample comprised of 6,233 (HIRD+CCQP) and 1,176 (HIRD+ CD2 + IQSS) patients with NSCLC. Both GEx data containers had similar patient demographics with a mean age 63 years and 71% White, while 70% of USCS patients were ≥65 years and 85% White. Most patients resided in the South/Midwest regions of the US (74% (HIRD+CCQP) and 86% (HIRD+CD2 + IQSS). Patients in GEx over-represented the working-age group, i.e. 65% were between 18 and 65 years old. Stage IV disease was frequently recorded at diagnosis (59.4% HIRD+CCQP, 44.0% HIRD+CD2 + IQSS, 46.1% USCS). All-cause mortality rate was 38.8 (HIRD+CCQP) and 27.3 (HIRD+CD2 + IQSS) per 100 person-years.

CONCLUSIONS

The analysis of NSCLC as a use-case demonstrated that GEx is a valuable data ecosystem with a generalizable working-age patient population and comprehensive data to facilitate timely real-world evidence generation in oncology.

摘要

目的

本研究的目的是以上皮性卵巢癌(EOC)为实例评估卓越证据生成(GEx)研究环境的能力。

方法

在GEx中识别出2015年1月1日至2019年12月31日期间确诊的EOC患者。使用了两个GEx数据容器:(1)来自医疗综合研究数据库(HIRD)的索赔数据与癌症护理质量计划(CCQP)的临床数据相关联(HIRD+CCQP);(2)来自HIRD的索赔数据以及与IntrinsiQ专业解决方案(IQSS)的电子病历相关联的第二个大型商业保险索赔数据集(CD2)(HIRD+CD2+IQSS)。将患者人口统计学和全因死亡率与美国社区调查和美国癌症统计(USCS)公共使用数据库进行对比。使用SAS Enterprise Guide 7.12和SEER*stat完成描述性分析。

结果

研究样本包括6233例(HIRD+CCQP)和1176例(HIRD+CD2+IQSS)EOC患者。两个GEx数据容器的患者人口统计学特征相似,平均年龄为63岁,白人占71%,而USCS患者中70%年龄≥65岁,白人占85%。大多数患者居住在美国南部/中西部地区(HIRD+CCQP组为74%,HIRD+CD2+IQSS组为86%)。GEx中的患者在工作年龄组中占比过高,即65%的患者年龄在18至65岁之间。诊断时经常记录为IV期疾病(HIRD+CCQP组为59.4%,HIRD+CD2+IQSS组为44.0%,USCS组为46.1%)。全因死亡率为每100人年38.8例(HIRD+CCQP)和27.3例(HIRD+CD2+IQSS)。

结论

以上皮性卵巢癌为实例的分析表明,GEx是一个有价值的数据生态系统,拥有可推广的工作年龄患者群体和全面的数据,有助于在肿瘤学中及时生成真实世界的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验