Suppr超能文献

细胞外电子传递蛋白有助于生物膜对三价铁矿物质的还原作用。

Extracellular electron transfer proteins contribute to reduction of ferric minerals by biofilms.

作者信息

Xu Jiacheng, Zhou Wei, Han Xi, Liu Jian, Dong Yiran, Jiang Yongguang, Zhong Yuhong, Shi Liang, Hu Yidan

机构信息

School of Environmental Studies, China University of Geosciences, Wuhan, Hubei, China.

State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan, Hubei, China.

出版信息

Appl Environ Microbiol. 2025 May 21;91(5):e0036925. doi: 10.1128/aem.00369-25. Epub 2025 Apr 9.

Abstract

To investigate how the thickness and extracellular electron transfer (EET) capabilities of microbial biofilms influence the reduction of ferric iron [Fe(III)]-containing minerals, we utilized four strains of with varying biofilm thicknesses and EET capabilities. These strains were engineered by modulating intracellular levels of dinucleotide second messengers. We systematically investigated the capacity of biofilms formed by four strains to reduce different Fe(III)-containing minerals including ferrihydrite, goethite, and lepidocrocite. By growing the biofilm on the Fe(III) mineral-coated slides, our results showed that the strains forming thin biofilms on surfaces of Fe(III) minerals exhibited faster Fe(III) reduction rates compared to those with thick biofilms. Transcriptomic analyses revealed the upregulation of the genes encoding bacterial EET-involved proteins in the thin biofilms, highlighting the significant role of these proteins in reducing Fe(III)-containing minerals by biofilms. Furthermore, genetic characterization identified the participation of two novel -type cytochromes (-Cyts), GSU1996 and GSU2513, in the reduction of Fe(III)-containing minerals by biofilms. The results from this study provide an improved understanding of mineral-microbe interaction. is a predominant species within biofilm communities that facilitate iron reduction, a process essential for the biogeochemical cycling of iron and other elements. However, the specific properties of biofilms crucial for iron reduction remain unclear. By manipulating intracellular levels of dinucleotide second messengers to generate strains with varying biofilm properties, this research reveals that thinner biofilms exhibit superior rates of ferric iron [Fe(III)] mineral reduction compared to thicker biofilms. This finding highlights the vital role of proteins involved in extracellular electron transfer (EET) in enhancing the reduction of Fe(III)-containing minerals. The study further identifies two novel -type cytochromes, GSU1996 and GSU2513, as important contributors to this process. These discoveries not only advance our understanding of microbial iron reduction but also offer new perspectives on the interactions between biofilms and mineral surfaces, potentially informing future research and applications in biogeochemical cycling and bioenergy.

摘要

为了研究微生物生物膜的厚度和细胞外电子转移(EET)能力如何影响含三价铁[Fe(III)]矿物的还原,我们利用了四株具有不同生物膜厚度和EET能力的菌株。这些菌株是通过调节细胞内二核苷酸第二信使的水平构建的。我们系统地研究了这四株菌株形成的生物膜还原不同含Fe(III)矿物(包括水铁矿、针铁矿和纤铁矿)的能力。通过在涂有Fe(III)矿物的载玻片上培养生物膜,我们的结果表明,与形成厚生物膜的菌株相比,在Fe(III)矿物表面形成薄生物膜的菌株表现出更快的Fe(III)还原速率。转录组分析揭示了薄生物膜中编码细菌EET相关蛋白的基因上调,突出了这些蛋白在生物膜还原含Fe(III)矿物中的重要作用。此外,基因表征确定了两种新型细胞色素(-Cyts),GSU1996和GSU2513,参与生物膜还原含Fe(III)矿物的过程。这项研究的结果有助于更好地理解矿物-微生物相互作用。是生物膜群落中促进铁还原的主要物种,铁还原是铁和其他元素生物地球化学循环的重要过程。然而,对于铁还原至关重要的生物膜的具体特性仍不清楚。通过操纵细胞内二核苷酸第二信使的水平来产生具有不同生物膜特性的菌株,这项研究表明,与厚生物膜相比,薄生物膜表现出更高的三价铁[Fe(III)]矿物还原速率。这一发现突出了参与细胞外电子转移(EET)的蛋白在增强含Fe(III)矿物还原中的重要作用。该研究进一步确定了两种新型细胞色素,GSU1996和GSU2513,是这一过程的重要贡献者。这些发现不仅推进了我们对微生物铁还原的理解,还为生物膜与矿物表面之间的相互作用提供了新的视角,可能为生物地球化学循环和生物能源的未来研究和应用提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3aec/12094021/5b43c80c4ed5/aem.00369-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验