Tants Jan-Niklas, Walbrun Andreas, Kollwitz Lucas, Friedrich Katharina, Rief Matthias, Schlundt Andreas
Institute for Molecular Biosciences and Biomolecular Resonance Center, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt 60438, Germany.
School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, Garching 85748, Germany.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2424434122. doi: 10.1073/pnas.2424434122. Epub 2025 Apr 9.
The interaction of mRNA and regulatory proteins is critical for posttranscriptional control. For proper function, these interactions, as well as the involved protein and RNA structures, are highly dynamic, and thus, mechanistic insights from structural biology are challenging to obtain. In this study, we employ a multifaceted approach combining single-molecule force spectroscopy (SMFS) with NMR spectroscopy to analyze the concerted interaction of the two RNA-binding interfaces (A-site and B-site) of the immunoregulatory protein Roquin's ROQ domain with the 3' untranslated region (UTR) of the mRNA. This 3'UTR contains two specific hairpin structures termed constitutive and alternative decay elements (CDE, ADE), which mediate mRNA degradation through Roquin binding. Our single-molecule experiments reveal that the CDE folds cooperatively, while ADE folding involves at least three on-pathway and three off-pathway intermediates. Using an integrated microfluidics setup, we extract binding kinetics to Roquin in real time. Supported by NMR data, we find opposing effects of the two Roquin subdomains on distinct regions of the ADE: While the A-site interacts strongly with the folded apical stem-loop, we find that the B-site has a distinct destabilizing effect on the central stem of the ADE owed to single-strand RNA binding. We propose that RNA-motif nature and Roquin A- and B-sites jointly steer mRNA decay with context-encoded specificity, and we suggest plasticity of stem structures as key determinant for Roquin-RNA complex formation. The unique combination of NMR and SMFS uncovers a mechanism of a dual-function RNA-binding domain, offering a model for target RNA recognition by Roquin.
mRNA与调控蛋白的相互作用对于转录后调控至关重要。为实现正常功能,这些相互作用以及所涉及的蛋白质和RNA结构具有高度动态性,因此,从结构生物学中获取机制性见解具有挑战性。在本研究中,我们采用多方面方法,将单分子力谱(SMFS)与核磁共振光谱相结合,以分析免疫调节蛋白Roquin的ROQ结构域的两个RNA结合界面(A位点和B位点)与mRNA的3'非翻译区(UTR)的协同相互作用。这个3'UTR包含两个特定的发夹结构,称为组成型和可变衰减元件(CDE、ADE),它们通过Roquin结合介导mRNA降解。我们的单分子实验表明,CDE协同折叠,而ADE折叠涉及至少三个主途径和三个非主途径中间体。使用集成微流控装置,我们实时提取与Roquin的结合动力学。在NMR数据的支持下,我们发现Roquin的两个亚结构域对ADE的不同区域有相反的影响:虽然A位点与折叠的顶端茎环强烈相互作用,但我们发现B位点由于单链RNA结合而对ADE的中央茎有明显的去稳定作用。我们提出,RNA基序性质以及Roquin的A位点和B位点共同以上下文编码的特异性引导mRNA降解,并且我们认为茎结构的可塑性是Roquin-RNA复合物形成的关键决定因素。NMR和SMFS的独特结合揭示了一个双功能RNA结合结构域的机制,为Roquin识别靶RNA提供了一个模型。