Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany.
University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany.
Biosci Rep. 2024 Oct 30;44(10). doi: 10.1042/BSR20240139.
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
调控 RNA 元件具有翻译调控、转录水平控制和病毒基因组复制调控等功能。反式作用因子(即 RNA 结合蛋白)结合所谓的顺式元件,并赋予复合物功能。在蛋白质-RNA 复合物 (RNP) 形成过程中,特异性通常利用 RNA 的结构可塑性。顺-反式对的功能完整性取决于适当折叠的 RNA 元件的可用性,并且 RNA 构象转变可能导致疾病。为了理解复合物的形成并推断功能效应,需要了解 RNA 结构和构象空间。然而,在体内条件下确定 RNA 的结构仍然具有挑战性。本综述提供了对结构完整的真核和病毒 RNA 顺式元件的概述,并讨论了 RNA 结构平衡对 RNP 形成的影响。我们展示了 RNA 结构变化对疾病的影响,概述了基于 RNA 结构的药物靶向策略,并总结了用于破译 RNA 结构的方法工具箱。