Suppr超能文献

果蝇中的CMP-唾液酸合成酶需要一个非经典位点的N-糖基化。

CMP-sialic acid synthetase in Drosophila requires N-glycosylation of a noncanonical site.

作者信息

Novikov Boris, Boland Devon J, Mertsalov Ilya, Scott Hilary, Dauletbayeva Saniya, Monagas-Valentin Pedro, Panin Vladislav

机构信息

Department of Biochemistry and Biophysics, AgriLife Research, Texas A&M University, College Station, Texas, USA.

Texas A&M Institute of Genome Sciences & Society, Texas A&M University, College Station, Texas, USA.

出版信息

J Biol Chem. 2025 Apr 7;301(6):108483. doi: 10.1016/j.jbc.2025.108483.

Abstract

Sialylation plays important roles in animals, affecting numerous molecular and cell interactions. In Drosophila, sialylation regulates neural transmission and mediates communication between neurons and glia. Drosophila CMP-sialic acid synthetase (CSAS), a key enzyme of the sialylation pathway, is localized to the Golgi and modified by N-glycosylation, suggesting that this modification can affect CSAS function. Here, we tested this hypothesis using in vitro and in vivo approaches. We found that CSAS proteins from divergent Drosophila species have two conserved N-glycosylation sites, including the rarely glycosylated noncanonical N-X-C sequon. We investigated CSAS glycosylation by generating CSAS "glycomutants" lacking glycosylation sites and analyzing them in vivo in transgenic rescue assays. The removal of noncanonical glycosylation significantly decreased CSAS activity, while the canonical site mutation did not affect CSAS function. Although all glycomutants were similarly localized to the Golgi, the non-canonical glycosylation, unlike the canonical one, affected CSAS stability in vivo and in vitro. Our results suggested that CSAS functions as a dimer, which was also supported by protein structure predictions that produced a dimer recapitulating the crystal structures of mammalian and bacterial counterparts, highlighting the evolutionary conservation of the CSAS structure-function relationship. This conclusion was supported by the rescue of CSAS mutants using the human ortholog. The noncanonical CSAS glycosylation was discussed in terms of a potential mechanism of temperature-dependent regulation of sialylation in poikilotherms that modulates neural activity in heat shock conditions. Taken together, we uncovered an important regulation of sialylation in Drosophila, highlighting a novel interplay between glycosylation pathways in neural regulation.

摘要

唾液酸化在动物中发挥着重要作用,影响着众多分子和细胞间的相互作用。在果蝇中,唾液酸化调节神经传递并介导神经元与神经胶质细胞之间的通讯。果蝇CMP - 唾液酸合成酶(CSAS)是唾液酸化途径的关键酶,定位于高尔基体并经N - 糖基化修饰,这表明这种修饰可能影响CSAS的功能。在此,我们使用体外和体内方法对这一假设进行了验证。我们发现,来自不同果蝇物种的CSAS蛋白有两个保守的N - 糖基化位点,包括很少被糖基化的非经典N - X - C序列。我们通过生成缺乏糖基化位点的CSAS“糖基突变体”并在转基因拯救试验中对其进行体内分析,来研究CSAS的糖基化。去除非经典糖基化显著降低了CSAS活性,而经典位点突变并不影响CSAS功能。尽管所有糖基突变体都同样定位于高尔基体,但与经典糖基化不同,非经典糖基化在体内和体外都影响CSAS的稳定性。我们的结果表明CSAS以二聚体形式发挥作用,蛋白质结构预测也支持这一点,该预测产生了一个重现哺乳动物和细菌对应物晶体结构的二聚体,突出了CSAS结构 - 功能关系的进化保守性。使用人类直系同源物拯救CSAS突变体也支持了这一结论。从变温动物中唾液酸化的温度依赖性调节的潜在机制方面讨论了非经典CSAS糖基化,该机制在热休克条件下调节神经活动。综上所述,我们揭示了果蝇中唾液酸化的重要调节机制,突出了神经调节中糖基化途径之间的一种新型相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2723/12144448/df0f36a1da13/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验