Lv Chang, Wu Huazhe, Yin Dejun, Fang Wei, Zhou Liming
College of Life Sciences, North China University of Science and Technology, Tangshan, 063000, Hebei, China.
Sci Rep. 2025 Apr 9;15(1):12190. doi: 10.1038/s41598-025-96287-x.
Thyroid cancer, the most common endocrine malignancy, has seen a significant rise in incidence, necessitating improved diagnostic and prognostic methods. Despite advancements in fine-needle aspiration biopsy (FNAB) and molecular mutation detection, these techniques have limitations, particularly in large nodules. This study aims to identify molecular markers and construct a comprehensive ceRNA regulatory network to enhance thyroid cancer diagnosis and prognosis. Using transcriptomic data from TCGA, GTEx, and GEO datasets, we performed differential expression analysis and WGCNA to identify key lncRNAs, miRNAs, and mRNAs involved in thyroid cancer. Gene Ontology and KEGG pathway analyses elucidated the biological functions and pathways of these genes. A ceRNA network was constructed, highlighting the interactions between 32 lncRNAs, 18 miRNAs, and 56 mRNAs. Survival analysis and the Cibersort algorithm further revealed the relationship between ceRNA regulatory networks and immune cell infiltration. A prognostic risk model was developed, incorporating key prognostic genes (PRR15, HCP5, and DUXAP8) and immune cells (resting NK cells, monocytes, M0 macrophages, and activated mast cells). DUXAP8 was positively correlated with activated mast cells and monocytes, while HCP5 was negatively correlated with resting NK cells. This study provides new insights into thyroid cancer pathogenesis, suggesting potential molecular markers for early diagnosis and personalized treatment. Integrating ceRNA regulatory mechanisms with immune cell analysis offers a novel perspective on the tumor microenvironment's role in thyroid cancer progression.
甲状腺癌是最常见的内分泌恶性肿瘤,其发病率显著上升,因此需要改进诊断和预后方法。尽管细针穿刺活检(FNAB)和分子突变检测技术有所进步,但这些技术存在局限性,尤其是在大结节中。本研究旨在识别分子标志物并构建一个全面的ceRNA调控网络,以提高甲状腺癌的诊断和预后水平。利用来自TCGA、GTEx和GEO数据集的转录组数据,我们进行了差异表达分析和加权基因共表达网络分析(WGCNA),以识别参与甲状腺癌的关键长链非编码RNA(lncRNA)、微小RNA(miRNA)和信使RNA(mRNA)。基因本体论(Gene Ontology)和京都基因与基因组百科全书(KEGG)通路分析阐明了这些基因的生物学功能和通路。构建了一个ceRNA网络,突出了32个lncRNA、18个miRNA和56个mRNA之间的相互作用。生存分析和Cibersort算法进一步揭示了ceRNA调控网络与免疫细胞浸润之间的关系。开发了一个预后风险模型,纳入了关键预后基因(PRR15、HCP5和DUXAP8)和免疫细胞(静息自然杀伤细胞、单核细胞、M0巨噬细胞和活化肥大细胞)。DUXAP8与活化肥大细胞和单核细胞呈正相关,而HCP5与静息自然杀伤细胞呈负相关。本研究为甲状腺癌发病机制提供了新的见解,提示了早期诊断和个性化治疗的潜在分子标志物。将ceRNA调控机制与免疫细胞分析相结合,为肿瘤微环境在甲状腺癌进展中的作用提供了新的视角。