Kang Jeongsoo, Kim Chanpyo, Kim Younghun, Kwon Younghun
Department of Applied Physics, Hanyang University, Ansan, 15588, South Korea.
Sci Rep. 2025 Apr 9;15(1):12134. doi: 10.1038/s41598-025-94448-6.
The transmon, which has a short gate time and remarkable scalability, is the most commonly utilized superconducting qubit, based on the Cooper pair box as a qubit or coupler in superconducting quantum computers. Lattice and heavy-hexagon structures are well-known large-scale configurations for transmon-based quantum computers that classical computers cannot simulate. These structures share a common feature: a resonator coupler that connects two transmon qubits. Although significant progress has been made in implementing quantum error correction and quantum computing using quantum error mitigation, fault-tolerant quantum computing remains unachieved due to the inherent vulnerability of these structures. This raises the question of whether the transmon-resonator-transmon structure is the best option for constructing a transmon-based quantum computer. To address this, we demonstrate that the average fidelity of CNOT gates can exceed 0.98 in a structure where a resonator coupler mediates the coupling of three transmon qubits. This result suggests that our novel structure could be a key method for increasing the number of connections among qubits while preserving gate performance in a transmon-based quantum computer.
跨导量子比特具有较短的门时间和显著的可扩展性,是基于库珀对盒作为超导量子计算机中的量子比特或耦合器而最常用的超导量子比特。晶格和重六边形结构是基于跨导量子比特的量子计算机的著名大规模配置,传统计算机无法对其进行模拟。这些结构有一个共同特征:连接两个跨导量子比特的谐振器耦合器。尽管在使用量子误差缓解来实现量子纠错和量子计算方面已经取得了重大进展,但由于这些结构固有的脆弱性,容错量子计算仍然无法实现。这就引出了一个问题,即跨导量子比特 - 谐振器 - 跨导量子比特结构是否是构建基于跨导量子比特的量子计算机的最佳选择。为了解决这个问题,我们证明在一种结构中,即通过谐振器耦合器介导三个跨导量子比特的耦合,CNOT门的平均保真度可以超过0.98。这一结果表明,我们的新型结构可能是在基于跨导量子比特的量子计算机中增加量子比特之间连接数量同时保持门性能的关键方法。