Bhattacharjee Anirban, Jain Panya, Deshmukh Jay, Das Srijita, Chand Madhavi, Patankar Meghan P, Vijay R
Department of Condensed Matter Physics and Material Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
Sci Rep. 2025 Feb 5;15(1):4426. doi: 10.1038/s41598-025-87410-z.
We report entangling two-qubit experiments implemented in a novel ring resonator architecture in 2D planar geometry. The ring resonator acts as a multi-path coupler between qubits and can provide beyond nearest neighbour interactions. We demonstrate pairwise coupling between three fixed-frequency transmon qubits connected to the ring resonator with measured coupling strengths (4.70 MHz, 2.80 MHz, and 2.65 MHz) in good agreement with those predicted from finite-element simulations. We implement an all-microwave controlled phase (CPHASE) gate between a pair of qubits with a gate time of 196 ns and demonstrate a two-qubit Bell state with a measured state fidelity of [Formula: see text]. Our results demonstrate the ability to entangle two qubits using the ring resonator and pave the way for creating highly connected multi-qubit networks in this architecture.
我们报告了在二维平面几何结构中的一种新型环形谐振器架构中实现的双量子比特纠缠实验。环形谐振器充当量子比特之间的多路径耦合器,并能提供超越最近邻的相互作用。我们展示了连接到环形谐振器的三个固定频率的跨导量子比特之间的成对耦合,测量得到的耦合强度(4.70兆赫兹、2.80兆赫兹和2.65兆赫兹)与有限元模拟预测的结果高度吻合。我们在一对量子比特之间实现了全微波控制相位(CPHASE)门,门时间为196纳秒,并展示了一个双量子比特贝尔态,测量得到的态保真度为[公式:见原文]。我们的结果证明了使用环形谐振器纠缠两个量子比特的能力,并为在这种架构中创建高度连接的多量子比特网络铺平了道路。