Kalgutkar Akshay Prakash, Sikdar Shirsendu, Banerjee Sauvik, Walton Karl, Mishra Rakesh
Civil Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
Sci Rep. 2025 Apr 9;15(1):12198. doi: 10.1038/s41598-025-96150-z.
Thin-walled hollow composite members (HCM) are extensively employed in aerospace and automotive industries due to their high strength-to-weight ratio and design flexibility. This study introduces a hybrid -numerical-experimental framework for robust detection and characterisation of barely visible damage in HCM using guided waves (GW). It focuses on assessing surface abrasion and hairline cracks, two common yet challenging damage types encountered in the field. A semi-analytical finite element (SAFE) formulation is developed for the dispersion analysis alongside numerical simulations using finite element software COMSOL Multiphysics, and experimental validation is performed to ensure accurate and reliable results. The study focuses on GW propagation and scattering behaviour under varying damage scenarios, exploring the effects of damage size, position, and its offset on wave features. Parametric analyses show significant variations in wave characteristics such as group velocity, amplitude, and mode features. A waveform and statistical approach incorporating continuous wavelet transform (CWT) and energy enables precise damage classification. Results show that abrasion-induced damages cause substantial changes in GW features in terms of DIs and statistical parameters, while hairline cracks marginally affect the damage indices and wave features, aiding in distinguishing between different damage types. These findings contribute to the development of robust damage identification algorithms for structural health monitoring, providing valuable insights for optimising the maintenance and performance of composite structures in critical engineering environments, ensuring safety and operational efficiency.
薄壁空心复合材料构件(HCM)因其高比强度和设计灵活性而在航空航天和汽车工业中得到广泛应用。本研究引入了一种混合数值-实验框架,用于使用导波(GW)对HCM中几乎不可见的损伤进行可靠检测和表征。它着重评估表面磨损和发丝裂纹,这是该领域中常见但具有挑战性的两种损伤类型。开发了一种半解析有限元(SAFE)公式用于色散分析,并使用有限元软件COMSOL Multiphysics进行数值模拟,并进行实验验证以确保结果准确可靠。该研究关注不同损伤场景下导波的传播和散射行为,探索损伤大小、位置及其偏移对波特征的影响。参数分析表明,诸如群速度、振幅和模式特征等波特性存在显著变化。一种结合连续小波变换(CWT)和能量的波形和统计方法能够实现精确的损伤分类。结果表明,磨损引起的损伤在损伤指标和统计参数方面会导致导波特征发生重大变化,而发丝裂纹对损伤指标和波特征的影响较小,有助于区分不同的损伤类型。这些发现有助于开发用于结构健康监测的可靠损伤识别算法,为优化关键工程环境中复合结构的维护和性能提供有价值的见解,确保安全性和运行效率。