Suppr超能文献

用于检测测序数据中双基因作用的计算方法基准。

Benchmark of computational methods to detect digenism in sequencing data.

作者信息

Ogloblinsky Marie-Sophie C, Conrad Donald F, Baudot Anaïs, Tournier-Lasserve Elisabeth, Génin Emmanuelle, Marenne Gaëlle

机构信息

Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.

Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA.

出版信息

Eur J Hum Genet. 2025 Apr 9. doi: 10.1038/s41431-025-01834-9.

Abstract

Digenic inheritance is characterized by the combined alteration of two different genes leading to a disease. It could explain the etiology of many currently undiagnosed rare diseases. With the advent of next-generation sequencing technologies, the identification of digenic inheritance patterns has become more technically feasible, yet still poses significant challenges without any gold standard method. Here, we present a comprehensive overview of the existing methods developed to detect digenic inheritance in sequencing data and provide a classification in cohort-based and individual-based methods. The latter category of methods appeared the most applicable to rare diseases, especially the ones not needing patient phenotypic description as input. We discuss the availability of the different methods, their output and scalability to inform potential users. Focusing on methods to detect digenic inheritance in the case of very rare or heterogeneous diseases, we propose a benchmark using different real-life scenarios involving known digenic and putative neutral pairs of genes. Among these different methods, DiGePred stood out as the one giving the least number of false positives, ARBOCK as giving the greatest number of true positives, and DIEP as having the best balance between both. By synthesizing the state-of-the-art techniques and providing insights into their practical utility, this benchmark serves as a valuable resource for researchers and clinicians in selecting suitable methodologies for detecting digenic inheritance in a wide range of disorders using sequencing data.

摘要

双基因遗传的特征是两个不同基因的联合改变导致疾病。它可以解释许多目前尚未确诊的罕见疾病的病因。随着下一代测序技术的出现,双基因遗传模式的识别在技术上变得更加可行,但在没有任何金标准方法的情况下,仍然面临重大挑战。在这里,我们全面概述了为检测测序数据中的双基因遗传而开发的现有方法,并对基于队列和基于个体的方法进行了分类。后一类方法似乎最适用于罕见疾病,尤其是那些不需要患者表型描述作为输入的疾病。我们讨论了不同方法的可用性、它们的输出和可扩展性,以告知潜在用户。针对非常罕见或异质性疾病情况下检测双基因遗传的方法,我们提出了一个基准,使用涉及已知双基因和假定中性基因对的不同实际场景。在这些不同的方法中,DiGePred表现为假阳性数量最少,ARBOCK表现为真阳性数量最多,而DIEP在两者之间具有最佳平衡。通过综合最先进的技术并深入了解它们的实际效用,这个基准为研究人员和临床医生在使用测序数据为广泛疾病选择合适的双基因遗传检测方法时提供了宝贵的资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验