Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal (IRYCIS). CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
Evidence Production & Methods Directorate, Cochrane, London, UK.
Cochrane Database Syst Rev. 2024 Oct 14;10(10):CD015618. doi: 10.1002/14651858.CD015618.
BACKGROUND: Diagnosing people with a SARS-CoV-2 infection played a critical role in managing the COVID-19 pandemic and remains a priority for the transition to long-term management of COVID-19. Initial shortages of extraction and reverse transcription polymerase chain reaction (RT-PCR) reagents impaired the desired upscaling of testing in many countries, which led to the search for alternatives to RNA extraction/purification and RT-PCR testing. Reference standard methods for diagnosing the presence of SARS-CoV-2 infection rely primarily on real-time reverse transcription-polymerase chain reaction (RT-PCR). Alternatives to RT-PCR could, if sufficiently accurate, have a positive impact by expanding the range of diagnostic tools available for the timely identification of people infected by SARS-CoV-2, access to testing and the use of resources. OBJECTIVES: To assess the diagnostic accuracy of alternative (to RT-PCR assays) laboratory-based molecular tests for diagnosing SARS-CoV-2 infection. SEARCH METHODS: We searched the COVID-19 Open Access Project living evidence database from the University of Bern until 30 September 2020 and the WHO COVID-19 Research Database until 31 October 2022. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with suspected or known SARS-CoV-2 infection, or where tests were used to screen for infection, and studies evaluating commercially developed laboratory-based molecular tests for the diagnosis of SARS-CoV-2 infection considered as alternatives to RT-PCR testing. We also included all reference standards to define the presence or absence of SARS-CoV-2, including RT-PCR tests and established clinical diagnostic criteria. DATA COLLECTION AND ANALYSIS: Two authors independently screened studies and resolved disagreements by discussing them with a third author. Two authors independently extracted data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. We presented sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots and summarised results using average sensitivity and specificity using a bivariate random-effects meta-analysis. We illustrated the findings per index test category and assay brand compared to the WHO's acceptable sensitivity and specificity threshold for diagnosing SARS-CoV-2 infection using nucleic acid tests. MAIN RESULTS: We included data from 64 studies reporting 94 cohorts of participants and 105 index test evaluations, with 74,753 samples and 7517 confirmed SARS-CoV-2 cases. We did not identify any published or preprint reports of accuracy for a considerable number of commercially produced NAAT assays. Most cohorts were judged at unclear or high risk of bias in more than three QUADAS-2 domains. Around half of the cohorts were considered at high risk of selection bias because of recruitment based on COVID status. Three quarters of 94 cohorts were at high risk of bias in the reference standard domain because of reliance on a single RT-PCR result to determine the absence of SARS-CoV-2 infection or were at unclear risk of bias due to a lack of clarity about the time interval between the index test assessment and the reference standard, the number of missing results, or the absence of a participant flow diagram. For index tests categories with four or more evaluations and when summary estimations were possible, we found that: a) For RT-PCR assays designed to omit/adapt RNA extraction/purification, the average sensitivity was 95.1% (95% CI 91.1% to 97.3%), and the average specificity was 99.7% (95% CI 98.5% to 99.9%; based on 27 evaluations, 2834 samples and 1178 SARS-CoV-2 cases); b) For RT-LAMP assays, the average sensitivity was 88.4% (95% CI 83.1% to 92.2%), and the average specificity was 99.7% (95% CI 98.7% to 99.9%; 24 evaluations, 29,496 samples and 2255 SARS-CoV-2 cases); c) for TMA assays, the average sensitivity was 97.6% (95% CI 95.2% to 98.8%), and the average specificity was 99.4% (95% CI 94.9% to 99.9%; 14 evaluations, 2196 samples and 942 SARS-CoV-2 cases); d) for digital PCR assays, the average sensitivity was 98.5% (95% CI 95.2% to 99.5%), and the average specificity was 91.4% (95% CI 60.4% to 98.7%; five evaluations, 703 samples and 354 SARS-CoV-2 cases); e) for RT-LAMP assays omitting/adapting RNA extraction, the average sensitivity was 73.1% (95% CI 58.4% to 84%), and the average specificity was 100% (95% CI 98% to 100%; 24 evaluations, 14,342 samples and 1502 SARS-CoV-2 cases). Only two index test categories fulfil the WHO-acceptable sensitivity and specificity requirements for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. In addition, WHO-acceptable performance criteria were met for two assays out of 35 when tests were used according to manufacturer instructions. At 5% prevalence using a cohort of 1000 people suspected of SARS-CoV-2 infection, the positive predictive value of RT-PCR assays omitting/adapting RNA extraction/purification will be 94%, with three in 51 positive results being false positives, and around two missed cases. For TMA assays, the positive predictive value of RT-PCR assays will be 89%, with 6 in 55 positive results being false positives, and around one missed case. AUTHORS' CONCLUSIONS: Alternative laboratory-based molecular tests aim to enhance testing capacity in different ways, such as reducing the time, steps and resources needed to obtain valid results. Several index test technologies with these potential advantages have not been evaluated or have been assessed by only a few studies of limited methodological quality, so the performance of these kits was undetermined. Only two index test categories with enough evaluations for meta-analysis fulfil the WHO set of acceptable accuracy standards for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. These assays might prove to be suitable alternatives to RT-PCR for identifying people infected by SARS-CoV-2, especially when the alternative would be not having access to testing. However, these findings need to be interpreted and used with caution because of several limitations in the evidence, including reliance on retrospective samples without information about the symptom status of participants and the timing of assessment. No extrapolation of found accuracy data for these two alternatives to any test brands using the same techniques can be made as, for both groups, one test brand with high accuracy was overrepresented with 21/26 and 12/14 included studies, respectively. Although we used a comprehensive search and had broad eligibility criteria to include a wide range of tests that could be alternatives to RT-PCR methods, further research is needed to assess the performance of alternative COVID-19 tests and their role in pandemic management.
背景:诊断 SARS-CoV-2 感染在管理 COVID-19 大流行方面发挥了关键作用,并且仍然是向 COVID-19 长期管理过渡的优先事项。最初,提取和逆转录聚合酶链反应(RT-PCR)试剂的短缺阻碍了许多国家对检测的理想扩大,这导致人们寻求替代 RNA 提取/纯化和 RT-PCR 检测的方法。诊断 SARS-CoV-2 感染的参考标准方法主要依赖于实时逆转录聚合酶链反应(RT-PCR)。如果替代 RT-PCR 的准确性足够高,那么通过扩大可用于及时识别 SARS-CoV-2 感染人群的诊断工具范围、获得检测机会和利用资源,替代 RT-PCR 的检测可能会产生积极影响。
目的:评估替代(RT-PCR 检测)实验室基于分子检测方法诊断 SARS-CoV-2 感染的准确性。
检索方法:我们检索了伯尔尼大学 COVID-19 开放获取项目的实时证据数据库,检索时间截至 2020 年 9 月 30 日,以及世界卫生组织 COVID-19 研究数据库,检索时间截至 2022 年 10 月 31 日。我们没有对语言进行限制。
选择标准:我们纳入了疑似或已知 SARS-CoV-2 感染的人群,或使用检测进行感染筛查的人群,以及评估用于诊断 SARS-CoV-2 感染的商业开发的实验室基于分子检测的研究,这些检测被认为是 RT-PCR 检测的替代品。我们还纳入了所有参考标准,以确定 SARS-CoV-2 的存在或不存在,包括 RT-PCR 检测和既定的临床诊断标准。
数据收集和分析:两名作者独立筛选研究,并通过与第三名作者讨论来解决分歧。两名作者独立提取数据,并使用 QUADAS-2 工具评估研究的偏倚风险和适用性。我们使用配对森林图呈现了每个检测的敏感性和特异性,并使用二变量随机效应荟萃分析汇总了使用平均敏感性和特异性的结果。我们根据每个检测类别的结果和检测品牌,以及世界卫生组织对诊断 SARS-CoV-2 感染的核酸检测的可接受敏感性和特异性阈值,对检测结果进行了图示说明。
主要结果:我们纳入了 64 项研究的数据,这些研究报告了 94 个队列的参与者和 105 个检测评估,共有 74753 个样本和 7517 例确诊的 SARS-CoV-2 病例。我们没有发现大量商业生产的 NAAT 检测的准确性的已发表或预印本报告。大多数队列在三个以上 QUADAS-2 领域被评为高偏倚或高度不确定。由于招募是基于 COVID 状态,94 个队列中有近一半的队列在参考标准领域存在高选择偏倚风险。由于依赖单一 RT-PCR 结果来确定 SARS-CoV-2 感染的缺失,或由于对检测评估和参考标准之间的时间间隔、缺失结果的数量或缺乏参与者流程图存在不确定性,74 个队列中有四分之三的队列在参考标准领域存在高偏倚风险。对于有四个或更多评估的检测类别和可以进行汇总估计的情况,我们发现:a)对于设计省略/适应 RNA 提取/纯化的 RT-PCR 检测,平均敏感性为 95.1%(95%CI 91.1%至 97.3%),平均特异性为 99.7%(95%CI 98.5%至 99.9%;基于 27 项评估、2834 个样本和 1178 例 SARS-CoV-2 病例);b)对于 RT-LAMP 检测,平均敏感性为 88.4%(95%CI 83.1%至 92.2%),平均特异性为 99.7%(95%CI 98.7%至 99.9%;基于 24 项评估、29496 个样本和 2255 例 SARS-CoV-2 病例);c)对于 TMA 检测,平均敏感性为 97.6%(95%CI 95.2%至 98.8%),平均特异性为 99.4%(95%CI 94.9%至 99.9%;基于 14 项评估、2196 个样本和 942 例 SARS-CoV-2 病例);d)对于数字 PCR 检测,平均敏感性为 98.5%(95%CI 95.2%至 99.5%),平均特异性为 91.4%(95%CI 60.4%至 98.7%;基于 5 项评估、703 个样本和 354 例 SARS-CoV-2 病例);e)对于省略/适应 RNA 提取的 RT-LAMP 检测,平均敏感性为 73.1%(95%CI 58.4%至 84%),平均特异性为 100%(95%CI 98%至 100%;基于 24 项评估、14342 个样本和 1502 例 SARS-CoV-2 病例)。只有两种检测类别符合世界卫生组织对 SARS-CoV-2 核酸检测的可接受敏感性和特异性要求:设计省略/适应 RNA 提取/纯化的 RT-PCR 检测和 TMA 检测。此外,当根据制造商的说明使用时,有两种检测在 35 种检测中符合世界卫生组织的可接受性能标准。在 1000 名疑似 SARS-CoV-2 感染的人群中,以 5%的患病率使用 RT-PCR 检测,其省略/适应 RNA 提取/纯化的阳性预测值为 94%,其中 51 个阳性结果中有 3 个为假阳性,约有 2 个病例漏诊。对于 TMA 检测,其 RT-PCR 检测的阳性预测值为 89%,其中 55 个阳性结果中有 6 个为假阳性,约有 1 个病例漏诊。
作者结论:替代实验室基于分子检测的方法旨在通过减少获得有效结果所需的时间、步骤和资源来提高检测能力。这些具有潜在优势的几种检测技术尚未得到评估,或者仅由少数有限方法学质量的研究进行了评估,因此这些试剂盒的性能尚不确定。只有两种评估有足够的汇总分析的检测类别符合世界卫生组织对 SARS-CoV-2 核酸检测的可接受准确性标准:设计省略/适应 RNA 提取/纯化的 RT-PCR 检测和 TMA 检测。这些检测可能被证明是识别 SARS-CoV-2 感染人群的替代 RT-PCR 方法,尤其是当无法进行检测时。然而,由于证据存在若干局限性,包括对参与者症状状态和检测评估与参考标准之间时间间隔、缺失结果数量或缺乏参与者流程图的不确定性的依赖于回顾性样本,因此需要谨慎解释和使用这些发现。对于使用相同技术的这两种替代检测的任何检测品牌,都不能从发现的准确性数据中推断出来,因为在这两个组中,一个具有高准确性的检测品牌都占有很高的比例,分别为 21/26 和 12/14 纳入的研究。尽管我们使用了全面的检索,并对纳入的研究有广泛的适用性标准,以纳入广泛的可替代 RT-PCR 方法的检测,但仍需要进一步研究来评估替代 COVID-19 检测的性能及其在大流行管理中的作用。
Cochrane Database Syst Rev. 2024-10-14
Cochrane Database Syst Rev. 2022-7-22
Cochrane Database Syst Rev. 2022-11-17
Cochrane Database Syst Rev. 2024-12-16
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2022-5-16
Cochrane Database Syst Rev. 2022-3-2
Cochrane Database Syst Rev. 2025-6-25
Cochrane Database Syst Rev. 2017-5-26
Cochrane Database Syst Rev. 2024-8-13
Nurs Rep. 2025-5-30
Int J Mol Sci. 2025-1-13
Infect Dis Clin Microbiol. 2023-6-23
Enferm Infecc Microbiol Clin (Engl Ed). 2023-10
BMC Med Res Methodol. 2022-11-28
Cochrane Database Syst Rev. 2022-11-17