Huang Xiong, Fan Jiangtao, Liu Cai, Wang Peiyun, Li Hongfei, Wang Gang, Chen Xiaohong
Key Laboratory of Ecological Forestry Engineering of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
National Forestry and Grassland Southwest Engineering Technology Research Centre of Taxus, Sichuan Agricultural University, Dujiangyan, 611800, China.
BMC Genomics. 2025 Apr 9;26(1):357. doi: 10.1186/s12864-025-11522-z.
The basic helix-loop-helix (bHLH) transcription factors are involved in the biosynthesis of various secondary metabolites. However, genome-wide studies on the bHLH gene family in ferns and their role in lignin biosynthesis remain limited. As the second largest group of vascular plants, ferns are of significant interest for understanding plant evolution and secondary metabolism. Among ferns, Alsophila spinulosa stands out as one of the few tree ferns with a distinctive trunk structure. Investigating the genes potentially regulating lignin biosynthesis in A. spinulosa offers valuable insights into the growth and development mechanisms of its trunk, which is pivotal for the overall architecture and function of the plant.
In this study, we conducted a systematic study of bHLH gene families in five ferns, including 186 in A. spinulosa, 130 in A. capillus, 107 in A. filiculoides, 71 in S. cucullata, and 67 in C. richardii. Based on phylogenetic analysis, all bHLH genes were classified into 28 subgroups. The number of bHLH members in different ferns was closely related to their growth patterns and life habits, with the number in tree ferns being much larger than in other ferns. In addition, we identified tandem duplication in C. richardii and A. capillus as a key driver of their bHLH gene diversity, whereas in A. spinulosa, segmental duplication contributed more to gene expansion and evolution. Most of the bHLH genes in ferns are in a state of purifying selection. Additionally, tissue-specific expression patterns of AspbHLH genes suggest diverse functional roles in plant growth, development, and metabolite synthesis. We further focused on three genes, AspbHLH80, AspbHLH120, and AspbHLH185, which are specifically highly expressed in xylem. Results from weighted gene co-expression network analysis (WGCNA) and downstream target gene prediction indicate their potential regulatory roles in lignin biosynthesis.
This study presents a comprehensive genomic analysis of the bHLH gene family in five fern species. We found a strong correlation between bHLH gene number and fern growth morphology, with tree ferns exhibiting a significantly higher number of bHLH genes. Tandem duplications were key to bHLH gene diversity in C. richardii, A. capillus, and A. spinulosa, while segmental duplications contributed more to bHLH gene expansion in A. spinulosa. Evolutionary analysis indicated most fern bHLH genes are under purifying selection. Tissue-specific expression patterns of AspbHLH genes suggest roles in growth, development, and secondary metabolism. Furthermore, WGCNA and target gene predictions highlight three genes (AspbHLH80, AspbHLH120, and AspbHLH185) potentially involved in lignin biosynthesis. Overall, this work provides key insights into the mechanisms of wood formation in ferns and advances our understanding of plant secondary metabolism.
基本螺旋-环-螺旋(bHLH)转录因子参与多种次生代谢产物的生物合成。然而,关于蕨类植物中bHLH基因家族的全基因组研究及其在木质素生物合成中的作用仍然有限。作为维管植物的第二大类群,蕨类植物对于理解植物进化和次生代谢具有重要意义。在蕨类植物中,桫椤是少数具有独特树干结构的树蕨之一。研究桫椤中潜在调控木质素生物合成的基因,有助于深入了解其树干的生长发育机制,而这对于植物的整体结构和功能至关重要。
在本研究中,我们对五种蕨类植物的bHLH基因家族进行了系统研究,包括桫椤中的186个、毛轴蕨中的130个、线羽瘤蕨中的107个、阴石蕨中的71个和理查得鳞毛蕨中的67个。基于系统发育分析,所有bHLH基因被分为28个亚组。不同蕨类植物中bHLH成员的数量与其生长模式和生活习性密切相关,树蕨中的bHLH基因数量远多于其他蕨类植物。此外,我们发现理查得鳞毛蕨和毛轴蕨中的串联重复是其bHLH基因多样性的关键驱动因素,而在桫椤中,片段重复对基因扩展和进化的贡献更大。蕨类植物中的大多数bHLH基因处于纯化选择状态。此外,桫椤bHLH基因的组织特异性表达模式表明它们在植物生长、发育和代谢物合成中具有多种功能作用。我们进一步聚焦于三个基因,即AspbHLH80、AspbHLH120和AspbHLH185,它们在木质部中特异性高表达。加权基因共表达网络分析(WGCNA)和下游靶基因预测结果表明它们在木质素生物合成中具有潜在的调控作用。
本研究对五种蕨类植物的bHLH基因家族进行了全面的基因组分析。我们发现bHLH基因数量与蕨类植物生长形态之间存在密切关联,树蕨中的bHLH基因数量显著更多。串联重复是理查得鳞毛蕨、毛轴蕨和桫椤中bHLH基因多样性的关键,而片段重复对桫椤中bHLH基因扩展的贡献更大。进化分析表明大多数蕨类bHLH基因处于纯化选择之下。桫椤bHLH基因的组织特异性表达模式表明它们在生长、发育和次生代谢中发挥作用。此外,WGCNA和靶基因预测突出了三个可能参与木质素生物合成的基因(AspbHLH80、AspbHLH120和AspbHLH185)。总体而言,这项工作为蕨类植物木材形成机制提供了关键见解,并推进了我们对植物次生代谢的理解。