Li Mingxun, Wang Zhiwei, Ma Zheng, Wang Yangyang, Jia Haoran, Zhang Lei, Chen Peng, Mao Yongjiang, Yang Zhangping
Key Laboratory of Animal Genetics & Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, 88 University South Avenue, Yangzhou, 225009, Jiangsu, China.
Anim Microbiome. 2025 Apr 9;7(1):35. doi: 10.1186/s42523-025-00399-8.
Heat stress poses a significant challenge to dairy cattle, leading to adverse physiological effects, reduced milk yield, impaired reproduction performance and economic losses. This study investigates the role of the rumen microbiome in mediating heat resistance in dairy cows. Using the entropy-weighted TOPSIS method, we classified 120 dairy cows into heat-resistant (HR) and heat-sensitive (HS) groups based on physiological and biochemical markers, including rectal temperature (RT), respiratory rate (RR), salivation index (SI) and serum levels of potassium ion (K), heat shock protein 70 (HSP70) and cortisol. Metagenomic sequencing of rumen fluid samples revealed distinct microbial compositions and functional profiles between the two groups. HR cows exhibited a more cohesive and functionally stable microbiome, dominated by taxa such as Ruminococcus flavefaciens and Succiniclasticum, which are key players in fiber degradation and short-chain fatty acid production. Functional analysis highlighted the enrichment of the pentose phosphate pathway (PPP) in HR cows, suggesting a metabolic adaptation that enhances oxidative stress management. In contrast, HS cows showed increased activity in the tricarboxylic acid (TCA) cycle, pyruvate metabolism and other energy-intensive pathways, indicating a higher metabolic burden under heat stress. These findings underscore the critical role of the rumen microbiome in modulating heat resistance and suggest potential microbiome-based strategies for improving dairy cattle resilience to climate change.
热应激对奶牛构成了重大挑战,导致不良的生理影响、产奶量下降、繁殖性能受损和经济损失。本研究调查了瘤胃微生物群在介导奶牛耐热性中的作用。我们使用熵权TOPSIS法,根据包括直肠温度(RT)、呼吸频率(RR)、流涎指数(SI)以及血清钾离子(K)、热休克蛋白70(HSP70)和皮质醇水平等生理生化指标,将120头奶牛分为耐热(HR)组和热敏感(HS)组。瘤胃液样本的宏基因组测序揭示了两组之间不同的微生物组成和功能特征。HR奶牛表现出更具凝聚力和功能稳定的微生物群,以诸如黄化瘤胃球菌和琥珀酸分解菌等分类群为主导,它们是纤维降解和短链脂肪酸产生的关键参与者。功能分析突出了HR奶牛中磷酸戊糖途径(PPP)的富集,表明一种增强氧化应激管理的代谢适应。相比之下,HS奶牛在三羧酸(TCA)循环、丙酮酸代谢和其他能量密集型途径中表现出活性增加,表明在热应激下代谢负担更高。这些发现强调了瘤胃微生物群在调节耐热性中的关键作用,并提出了基于微生物群的潜在策略来提高奶牛对气候变化的适应能力。