Li Jiachen, Zhang Yulei, Fu Yanqin, Li Tao, Zhang Jian, Yang Deyu, Cao Lingfei, Lu Fanyu, Zhao Junhao, Lv Junshuai, Li Hejun
Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
Henan Key Laboratory of High Performance Carbon Fiber Reinforced Composites, Institute of Carbon Matrix Composites, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China.
Adv Sci (Weinh). 2025 Jul;12(26):e2503226. doi: 10.1002/advs.202503226. Epub 2025 Apr 9.
The inherent brittleness and insufficient thermal shock resistance of ultra-high temperature ceramic (UHTC) in severe thermal environments (above 2000 °C) remain significant challenges. This characteristic notably shortens their operational lifespan as thermal protective coatings on structural composites in reusable aerospace applications. To address these challenges, a "ceramic self-toughening strategy" is introduced, aimed at enhancing the plasticity and thermal shock resistance of (Hf─Zr─Ti)C coatings through twin toughening-driven martensitic transformations in the oxide scale. In this work, the oxidation of (HfZrTi)C and (HfZrTi)C coatings produced Ti-doped (HfZr)O and Ti-doped (HfZr)O, with martensitic transformations initiated by "slip band-twin transfer" and "stacking fault-twin transfer", respectively. The mechanism facilitated the formation of stable, dense, and high-toughness oxide scales after repeat ablation, and then endowed the prepared coatings with superior repeat ablation resistance than current thermal protective coatings. The findings elucidated the role of martensitic transformation mechanisms of Ti-doped (Hf, Zr)O during repeat ablation, and provided general design guidelines for synergistically controlling the component, microstructure, toughness, and thermal shock resistance of UHTC blocks and UHTC-modified composites in severe thermal environments.
在极端热环境(2000°C以上)中,超高温陶瓷(UHTC)固有的脆性和抗热震性不足仍然是重大挑战。这一特性显著缩短了它们在可重复使用航空航天应用中作为结构复合材料热防护涂层的使用寿命。为应对这些挑战,引入了一种“陶瓷自增韧策略”,旨在通过氧化层中孪晶增韧驱动的马氏体相变来提高(Hf─Zr─Ti)C涂层的塑性和抗热震性。在这项工作中,(HfZrTi)C和(HfZrTi)C涂层的氧化生成了Ti掺杂的(HfZr)O和Ti掺杂的(HfZr)O,马氏体相变分别由“滑移带-孪晶转移”和“堆垛层错-孪晶转移”引发。该机制在反复烧蚀后促进了稳定、致密且高韧性氧化层的形成,进而赋予制备的涂层比当前热防护涂层更优异的反复抗烧蚀性。这些发现阐明了Ti掺杂的(Hf, Zr)O在反复烧蚀过程中马氏体相变机制的作用,并为在极端热环境下协同控制UHTC块体和UHTC改性复合材料的成分、微观结构、韧性和抗热震性提供了通用设计准则。