文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

FRID-PI:一种基于F-FDG PET/CT和炎症标志物诊断骨折相关感染的机器学习模型。

FRID-PI: a machine learning model for diagnosing fracture-related infections based on F-FDG PET/CT and inflammatory markers.

作者信息

Yang Mei, Tan Quanhui, Li Tingting, Chen Jie, Hu Weiwei, Zhang Yi, Chen Xiaohua, Wang Jiangfeng, Shen Chentian, Tang Zhenghao

机构信息

Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Med (Lausanne). 2025 Mar 26;12:1534988. doi: 10.3389/fmed.2025.1534988. eCollection 2025.


DOI:10.3389/fmed.2025.1534988
PMID:40206486
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11979198/
Abstract

PURPOSE: The diagnosis of fracture-related infection (FRI) especially patients presenting without clinical confirmatory criteria in clinical settings poses challenges with potentially serious consequences if misdiagnosed. This study aimed to construct and evaluate a novel diagnostic nomogram based on F-fluorodeoxyglucose positron emission tomography /computed tomography (F-FDG PET/CT) and laboratory biomarkers for FRI by machine learning. METHODS: A total of 552 eligible patients recruited from a single institution between January 2021 and December 2022 were randomly divided into a training (60%) and a validation (40%) cohort. In the training cohort, the Least Absolute Shrinkage and Selection Operator (LASSO) regression model analysis and multivariate Cox regression analysis were utilized to identify predictive factors for FRI. The performance of the model was assessed using the area under the Receiver Operating Characteristic (ROC) curve (AUC), calibration curves, and decision curve analysis in both training and validation cohorts. RESULTS: A nomogram model (named FRID-PE) based on the maximum standardized uptake value (SUV) from F-FDG PET/CT imaging, Systemic Immune-Inflammation Index (SII), Interleukin - 6 and erythrocyte sedimentation rate (ESR) were generated, yielding an AUC of 0.823 [95% confidence interval (CI), 0.778-0.868] in the training test and 0.811 (95% CI, 0.753-0.869) in the validation cohort for the diagnosis of FRI. Furthermore, the calibration curves and decision curve analysis proved the potential clinical utility of this model. An online webserver was built based on the proposed nomogram for convenient clinical use. CONCLUSION: This study introduces a novel model (FRID - PI) based on SUV and inflammatory markers, such as SII, IL - 6, and ESR, for diagnosing FRI. Our model, which exhibits good diagnostic performance, holds promise for future clinical applications. CLINICAL RELEVANCE STATEMENT: The study aims to construct and evaluate a novel diagnostic model based on F-fluorodeoxyglucose positron emission tomography /computed tomography (F-FDG PET/CT) and laboratory biomarkers for fracture-related infection (FRI).

摘要

目的:骨折相关感染(FRI)的诊断,尤其是在临床环境中无临床确诊标准的患者,若误诊可能会导致严重后果,因此颇具挑战性。本研究旨在通过机器学习构建并评估一种基于F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)和实验室生物标志物的新型FRI诊断列线图。 方法:2021年1月至2022年12月期间从单一机构招募的552例符合条件的患者被随机分为训练组(60%)和验证组(40%)。在训练组中,使用最小绝对收缩和选择算子(LASSO)回归模型分析和多变量Cox回归分析来确定FRI的预测因素。在训练组和验证组中,使用受试者工作特征(ROC)曲线下面积(AUC)、校准曲线和决策曲线分析来评估模型的性能。 结果:生成了一个基于F-FDG PET/CT成像的最大标准化摄取值(SUV)、全身免疫炎症指数(SII)、白细胞介素-6和红细胞沉降率(ESR)的列线图模型(命名为FRID-PE),在训练测试中诊断FRI的AUC为0.823 [95%置信区间(CI),0.778-0.868],在验证组中为0.811(95%CI,0.753-0.869)。此外,校准曲线和决策曲线分析证明了该模型的潜在临床实用性。基于所提出的列线图构建了一个在线网络服务器,以便于临床使用。 结论:本研究引入了一种基于SUV和炎症标志物(如SII、IL-6和ESR)的新型模型(FRID-PI)来诊断FRI。我们的模型具有良好的诊断性能,有望在未来的临床应用中发挥作用。 临床相关性声明:本研究旨在构建并评估一种基于F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)和实验室生物标志物的新型骨折相关感染(FRI)诊断模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/116e303411dc/fmed-12-1534988-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/7ab1911304c1/fmed-12-1534988-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/421ad3e0626a/fmed-12-1534988-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/0a37f8684fa2/fmed-12-1534988-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/7db2a1a0eec6/fmed-12-1534988-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/116e303411dc/fmed-12-1534988-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/7ab1911304c1/fmed-12-1534988-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/421ad3e0626a/fmed-12-1534988-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/0a37f8684fa2/fmed-12-1534988-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/7db2a1a0eec6/fmed-12-1534988-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b82/11979198/116e303411dc/fmed-12-1534988-g005.jpg

相似文献

[1]
FRID-PI: a machine learning model for diagnosing fracture-related infections based on F-FDG PET/CT and inflammatory markers.

Front Med (Lausanne). 2025-3-26

[2]
The diagnostic accuracy of F-FDG PET/CT in diagnosing fracture-related infections.

Eur J Nucl Med Mol Imaging. 2018-12-7

[3]
Machine learning based on clinico-biological features integrated F-FDG PET/CT radiomics for distinguishing squamous cell carcinoma from adenocarcinoma of lung.

Eur J Nucl Med Mol Imaging. 2021-5

[4]
F-FDG PET/CT-based radiomics nomogram for preoperative prediction of macrotrabecular-massive hepatocellular carcinoma: a two-center study.

Abdom Radiol (NY). 2023-2

[5]
Diagnostic Value of F-FDG PET/CT-Based Radiomics Nomogram in Bone Marrow Involvement of Pediatric Neuroblastoma.

Acad Radiol. 2023-5

[6]
Development and validation of a nomogram for predicting bone marrow involvement in lymphoma patients based on F-FDG PET radiomics and clinical factors.

Ann Nucl Med. 2025-3-29

[7]
An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

Eur Radiol. 2024-1

[8]
Diagnostic Value of Increased [18F]FDG Uptake in Locoregional Lymph Nodes on PET/CT in Patients with Suspected Fracture-Related Infection.

Diagnostics (Basel). 2025-3-4

[9]
Development and validation of a F-FDG PET/CT radiomics nomogram for predicting progression free survival in locally advanced cervical cancer: a retrospective multicenter study.

BMC Cancer. 2024-1-30

[10]
Establishing a predictive model for tumor mutation burden status based on F-FDG PET/CT and clinical features of non-small cell lung cancer patients.

Transl Lung Cancer Res. 2024-9-30

本文引用的文献

[1]
Preoperative Laboratory Values Predicting Periprosthetic Joint Infection in Morbidly Obese Patients Undergoing Total Hip or Knee Arthroplasty.

J Bone Joint Surg Am. 2024-7-17

[2]
Inguinal draining-lymph node in F-FDG PET/CT images could be a new indicator for the diagnosis of fracture-related infection in the lower extremities.

Front Immunol. 2023

[3]
The Role of Combined Inflammatory Biomarkers in the Diagnosis of High- and Low-Virulence FRI Among High-Risk Lower Extremity Fractures.

Int J Gen Med. 2023-8-8

[4]
Diagnosis of fracture-related infection in patients without clinical confirmatory criteria: an international retrospective cohort study.

J Bone Jt Infect. 2023-4-21

[5]
Development of an MRI-Based Radiomics-Clinical Model to Diagnose Liver Fibrosis Secondary to Pancreaticobiliary Maljunction in Children.

J Magn Reson Imaging. 2023-8

[6]
Assessment of Therapeutic Responses Using a Deep Neural Network Based on F-FDG PET and Blood Inflammatory Markers in Pyogenic Vertebral Osteomyelitis.

Medicina (Kaunas). 2022-11-21

[7]
Fracture-related infection.

Nat Rev Dis Primers. 2022-10-20

[8]
Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019.

Lancet Healthy Longev. 2021-9

[9]
Predictive values of blood urea nitrogen/creatinine ratio and other routine blood parameters on disease severity and survival of COVID-19 patients.

J Med Virol. 2021-2

[10]
Comparative diagnostic accuracy of respective nuclear imaging for suspected fracture-related infection: a systematic review and Bayesian network meta-analysis.

Arch Orthop Trauma Surg. 2021-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索