Suppr超能文献

基于 F-FDG PET 和血炎症标志物的深度学习神经网络在化脓性脊柱骨髓炎治疗反应评估中的应用。

Assessment of Therapeutic Responses Using a Deep Neural Network Based on F-FDG PET and Blood Inflammatory Markers in Pyogenic Vertebral Osteomyelitis.

机构信息

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.

Department of Nuclear Medicine, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea.

出版信息

Medicina (Kaunas). 2022 Nov 21;58(11):1693. doi: 10.3390/medicina58111693.

Abstract

This study investigated the usefulness of deep neural network (DNN) models based on F-fluorodeoxyglucose positron emission tomography (FDG-PET) and blood inflammatory markers to assess the therapeutic response in pyogenic vertebral osteomyelitis (PVO). This was a retrospective study with prospectively collected data. Seventy-four patients diagnosed with PVO underwent clinical assessment for therapeutic responses based on clinical features during antibiotic therapy. The decisions of the clinical assessment were confirmed as 'Cured' or 'Non-cured'. FDG-PETs were conducted concomitantly regardless of the decision at each clinical assessment. We developed DNN models depending on the use of attributes, including C-reactive protein (CRP), erythrocyte sedimentation ratio (ESR), and maximum standardized FDG uptake values of PVO lesions (SUV), and we compared their performances to predict PVO remission. The 126 decisions (80 'Cured' and 46 'Non-cured' patients) were randomly assigned with training and test sets (7:3). We trained DNN models using a training set and evaluated their performances for a test set. DNN model 1 had an accuracy of 76.3% and an area under the receiver operating characteristic curve (AUC) of 0.768 [95% confidence interval, 0.625-0.910] using CRP and ESR, and these values were 79% and 0.804 [0.674-0.933] for DNN model 2 using ESR and SUV, 86.8% and 0.851 [0.726-0.976] for DNN model 3 using CRP and SUV, and 89.5% and 0.902 [0.804-0.999] for DNN model 4 using ESR, CRP, and SUV, respectively. The DNN models using SUV showed better performances when predicting the remission of PVO compared to CRP and ESR. The best performance was obtained in the DNN model using all attributes, including CRP, ESR, and SUV, which may be helpful for predicting the accurate remission of PVO.

摘要

本研究旨在探讨基于 F-氟代脱氧葡萄糖正电子发射断层扫描(FDG-PET)和血液炎症标志物的深度学习神经网络(DNN)模型在评估化脓性脊椎骨骨髓炎(PVO)治疗反应中的作用。这是一项回顾性研究,数据为前瞻性收集。74 例经临床诊断为 PVO 的患者,在抗生素治疗过程中根据临床特征进行了治疗反应的临床评估。临床评估的决定被确认为“治愈”或“未治愈”。无论每次临床评估的决定如何,均同时进行 FDG-PET 检查。我们根据 C-反应蛋白(CRP)、红细胞沉降率(ESR)和 PVO 病变最大标准化 FDG 摄取值(SUV)等属性的使用情况开发了 DNN 模型,并比较了它们预测 PVO 缓解的性能。126 项决策(80 项“治愈”和 46 项“未治愈”患者)被随机分配到训练集和测试集(7:3)。我们使用训练集训练 DNN 模型,并在测试集上评估其性能。DNN 模型 1 使用 CRP 和 ESR 的准确率为 76.3%,受试者工作特征曲线(ROC)下面积(AUC)为 0.768[95%置信区间,0.625-0.910],而 DNN 模型 2 使用 ESR 和 SUV 的准确率为 79%,AUC 为 0.804[0.674-0.933],DNN 模型 3 使用 CRP 和 SUV 的准确率为 86.8%,AUC 为 0.851[0.726-0.976],DNN 模型 4 使用 ESR、CRP 和 SUV 的准确率分别为 89.5%和 0.902[0.804-0.999]。与 CRP 和 ESR 相比,使用 SUV 预测 PVO 缓解的 DNN 模型具有更好的性能。在使用包括 CRP、ESR 和 SUV 在内的所有属性的 DNN 模型中获得了最佳性能,这可能有助于准确预测 PVO 的缓解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/015e/9698865/b0b231057a26/medicina-58-01693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验