文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在放射学工作流程中实施人工智能算法:挑战与考量

Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations.

作者信息

Korfiatis Panagiotis, Kline Timothy L, Meyer Holly M, Khalid Sana, Leiner Timothy, Loufek Brenna T, Blezek Daniel, Vidal David E, Hartman Robert P, Joppa Lori J, Missert Andrew D, Potretzke Theodora A, Taubel Jerome P, Tjelta Jason A, Callstrom Matthew R, Williamson Eric E

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN.

Mayo Clinic Platform, Mayo Clinic, Rochester, MN.

出版信息

Mayo Clin Proc Digit Health. 2024 Dec 18;3(1):100188. doi: 10.1016/j.mcpdig.2024.100188. eCollection 2025 Mar.


DOI:10.1016/j.mcpdig.2024.100188
PMID:40207002
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11975811/
Abstract

Integration of AI-enabled algorithms into the radiology workflow presents a complex array of challenges that span operational, technical, clinical, and regulatory domains. Successfully overcoming these hurdles requires a multifaceted approach, including strategic planning, educational initiatives, and careful consideration of the practical implications for radiologists' workloads. Institutions must navigate these challenges with a clear understanding of the potential benefits and limitations of both vended and in-house developed AI tools.

摘要

将人工智能算法集成到放射学工作流程中带来了一系列复杂的挑战,这些挑战跨越了运营、技术、临床和监管领域。成功克服这些障碍需要采取多方面的方法,包括战略规划、教育举措,以及仔细考虑对放射科医生工作量的实际影响。各机构必须在清楚了解商用和内部开发的人工智能工具的潜在益处和局限性的情况下应对这些挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5210/11975811/01e6d14791d3/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5210/11975811/98a3944274c0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5210/11975811/01e6d14791d3/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5210/11975811/98a3944274c0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5210/11975811/01e6d14791d3/gr2.jpg

相似文献

[1]
Implementing Artificial Intelligence Algorithms in the Radiology Workflow: Challenges and Considerations.

Mayo Clin Proc Digit Health. 2024-12-18

[2]
Workflow Applications of Artificial Intelligence in Radiology and an Overview of Available Tools.

J Am Coll Radiol. 2020-11

[3]
Artificial Intelligence: A Private Practice Perspective.

J Am Coll Radiol. 2020-11

[4]
Current practical experience with artificial intelligence in clinical radiology: a survey of the European Society of Radiology.

Insights Imaging. 2022-6-21

[5]
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.

Comput Biol Med. 2025-1

[6]
Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations.

Eur Radiol. 2020-2-17

[7]
AI Integration in the Clinical Workflow.

J Digit Imaging. 2021-12

[8]
Is Artificial Intelligence the New Friend for Radiologists? A Review Article.

Cureus. 2020-10-24

[9]
Pitfalls in Interpretive Applications of Artificial Intelligence in Radiology.

AJR Am J Roentgenol. 2024-10

[10]
Implications of Pediatric Artificial Intelligence Challenges for Artificial Intelligence Education and Curriculum Development.

J Am Coll Radiol. 2023-8

引用本文的文献

[1]
Utilizing artificial intelligence as an arbitrary tool in managing difficult COVID-19 cases in critical care medicine.

World J Crit Care Med. 2025-9-9

[2]
Can artificial intelligence in spine imaging affect current practice? Practical developments and their clinical status.

N Am Spine Soc J. 2025-5-27

[3]
Artificial Intelligence in Microsurgical Planning: A Five-Year Leap in Clinical Translation.

J Clin Med. 2025-6-27

[4]
Clinical obstacles to machine-learning POCUS adoption and system-wide AI implementation (The COMPASS-AI survey).

Ultrasound J. 2025-7-3

[5]
Demonstrating an Academic Core Facility for Automated Medical Image Processing and Analysis: Workflow Design and Practical Applications.

Diagnostics (Basel). 2025-3-21

本文引用的文献

[1]
US FDA Approval of Pediatric Artificial Intelligence and Machine Learning-Enabled Medical Devices.

JAMA Pediatr. 2025-2-1

[2]
The limits of fair medical imaging AI in real-world generalization.

Nat Med. 2024-10

[3]
Artificial Intelligence in Radiology: Opportunities and Challenges.

Semin Ultrasound CT MR. 2024-4

[4]
Translation of Artificial Intelligence Into Practice: The Radiologist as a Vendor.

J Am Coll Radiol. 2023-9

[5]
Translating AI to Clinical Practice: Overcoming Data Shift with Explainability.

Radiographics. 2023-5

[6]
Understanding and Appreciating Burnout in Radiologists.

Radiographics. 2022

[7]
Failures Hiding in Success for Artificial Intelligence in Radiology.

J Am Coll Radiol. 2021-3

[8]
The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database.

NPJ Digit Med. 2020-9-11

[9]
Artificial Intelligence and Machine Learning in Radiology: Current State and Considerations for Routine Clinical Implementation.

Invest Radiol. 2020-9

[10]
Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms.

JAMA Netw Open. 2020-3-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索