Suppr超能文献

调控界面分子构型以驱动面选择性锌金属沉积

Regulating Interfacial Molecular Configuration to Drive Facet-Selective Zn Metal Deposition.

作者信息

Ouyang Yue, Zong Wei, Gao Xuan, Leong Shi Xuan, Chen Jaslyn Ru Ting, Dai Yuhang, Dong Haobo, Phang In Yee, Shearing Paul R, He Guanjie, Miao Yue-E, Liu Tianxi, Ling Xing Yi

机构信息

School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Nanyang, Singapore, 637371.

Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.

出版信息

Angew Chem Int Ed Engl. 2025 Jun 17;64(25):e202504965. doi: 10.1002/anie.202504965. Epub 2025 Apr 21.

Abstract

The direct use of metal anode emerges as a key strategy in advancing high-energy-density batteries, applicable across non-protonic, aqueous, and solid-state battery systems. To enhance battery durability, one effective approach involves employing interfacial molecular modification to modulate metal's facet orientation, reducing the tendency of metals to form random and loose morphologies during deposition. Herein, we propose a model to elucidate how dicarboxylic acid molecules with varying alkyl chain lengths modulate their adsorption behavior and deposition rate on zinc (Zn) surfaces, achieving facet-selective Zn deposition. Taking glutaric acid (GA) as an example, its medium alkyl chain length allows for a "flat-lying" adsorption configuration on Zn(002) surface, resulting in strong adsorption and Zn-GA metal-molecule bridging interface. This regulates Zn diffusion process and restricts its accessibility to Zn(002) facet, facilitating the selective exposure of Zn(002) facet. Due to this design, the Zn||Zn symmetric cell stably operates at a high current density of 20 mA cm and a high depth of discharge of 85%. The Zn||MnO pouch cell achieves a high capacity of 1.1 Ah with 90% capacity retention. This metal-molecule interface design can be extended to other metal anodes, with the potential for tailored molecular selections to regulate the selective growth of crystal facets.

摘要

直接使用金属阳极已成为推进高能量密度电池发展的关键策略,适用于非质子、水性和固态电池系统。为提高电池耐久性,一种有效方法是采用界面分子修饰来调节金属的晶面取向,降低金属在沉积过程中形成随机且松散形态的倾向。在此,我们提出一个模型来阐明不同烷基链长度的二元羧酸分子如何调节其在锌(Zn)表面的吸附行为和沉积速率,从而实现晶面选择性的锌沉积。以戊二酸(GA)为例,其中等长度的烷基链使其能够在Zn(002)表面形成“平躺”吸附构型,导致强吸附以及Zn-GA金属-分子桥接界面。这调节了锌的扩散过程并限制其接触Zn(002)晶面,促进了Zn(002)晶面的选择性暴露。基于此设计,Zn||Zn对称电池在20 mA cm的高电流密度和85%的高放电深度下稳定运行。Zn||MnO软包电池实现了1.1 Ah的高容量以及90%的容量保持率。这种金属-分子界面设计可扩展到其他金属阳极,具有通过定制分子选择来调节晶面选择性生长的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验