Yang Yiyan, Yan Jing, Olson Rich, Jiang Xiaofang
Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA.
mSystems. 2025 May 20;10(5):e0006025. doi: 10.1128/msystems.00060-25. Epub 2025 Apr 10.
Vibrio cholerae pathogens cause cholera, an acute diarrheal disease resulting in significant morbidity and mortality worldwide. Biofilms in vibrios enhance their survival in natural ecosystems and facilitate transmission during cholera outbreaks. Critical components of the biofilm matrix include the polysaccharides produced by the -1 and -2 gene clusters and the biofilm matrix proteins encoded in the gene cluster, together comprising the biofilm matrix cluster. However, the biofilm matrix clusters and their evolutionary patterns in other species remain underexplored. In this study, we systematically investigated the distribution, diversity, and evolution of biofilm matrix clusters and proteins across the genus. Our findings reveal that these gene clusters are sporadically distributed throughout the genus, even appearing in species phylogenetically distant from . Evolutionary analysis of the major biofilm matrix proteins RbmC and Bap1 shows that they are structurally and sequentially related, having undergone structural domain and modular alterations. Additionally, a novel loop-less Bap1 variant was identified, predominantly represented in two phylogenetically distant subspecies clades that share specific gene groups associated with the presence or absence of the protein. Furthermore, our analysis revealed that , a gene involved in biofilm dispersal, shares a recent common ancestor with Vibriophage tail proteins, suggesting that phages may mimic host functions to evade biofilm-associated defenses. Our study offers a foundational understanding of the diversity and evolution of biofilm matrix clusters in vibrios, laying the groundwork for future biofilm engineering through genetic modification.
Biofilms help vibrios survive in nature and spread cholera. However, the genes that control biofilm formation in vibrios other than are not well understood. In this study, we analyzed the biofilm matrix gene clusters and proteins across diverse Vibrio species to explore their patterns and evolution. We discovered that these genes are spread across different Vibrio species, including those not closely related to . We also found various forms of key biofilm proteins with different structures. Additionally, we identified genes involved in biofilm dispersal that are related to vibriophage genes, highlighting the role of phages in biofilm development. This study not only provides a foundational understanding of biofilm diversity and evolution in vibrios but also leads to new strategies for engineering biofilms through genetic modification, which is crucial for managing cholera outbreaks and improving the environmental resilience of these bacteria.
霍乱弧菌病原体引发霍乱,这是一种急性腹泻病,在全球范围内导致大量发病和死亡。弧菌中的生物膜增强了它们在自然生态系统中的生存能力,并在霍乱暴发期间促进传播。生物膜基质的关键成分包括由-1和-2基因簇产生的多糖以及基因簇中编码的生物膜基质蛋白,它们共同构成生物膜基质簇。然而,其他弧菌物种中的生物膜基质簇及其进化模式仍未得到充分探索。在本研究中,我们系统地研究了整个弧菌属中生物膜基质簇和蛋白的分布、多样性及进化。我们的研究结果表明,这些基因簇在整个弧菌属中呈零星分布,甚至出现在与霍乱弧菌亲缘关系较远的物种中。对主要生物膜基质蛋白RbmC和Bap1的进化分析表明,它们在结构和序列上相关,经历了结构域和模块的改变。此外,还鉴定出一种新型无环Bap1变体,主要存在于两个亲缘关系较远的弧菌亚种分支中,这两个分支共享与该蛋白存在与否相关的特定基因组。此外,我们的分析表明,参与生物膜分散的基因与噬菌体尾部蛋白有最近的共同祖先,这表明噬菌体可能模仿宿主功能以逃避与生物膜相关的防御。我们的研究为弧菌中生物膜基质簇的多样性和进化提供了基础认识,为未来通过基因改造进行生物膜工程奠定了基础。
生物膜有助于弧菌在自然界中生存并传播霍乱。然而,除霍乱弧菌外,控制其他弧菌生物膜形成的基因尚不清楚。在本研究中,我们分析了不同弧菌物种中的生物膜基质基因簇和蛋白,以探索它们的模式和进化。我们发现这些基因分布在不同的弧菌物种中,包括那些与霍乱弧菌关系不密切的物种。我们还发现了具有不同结构的关键生物膜蛋白的各种形式。此外,我们鉴定出与生物膜分散相关的基因与噬菌体基因有关,突出了噬菌体在生物膜发育中的作用。这项研究不仅为弧菌中生物膜的多样性和进化提供了基础认识,还为通过基因改造进行生物膜工程带来了新策略,这对于控制霍乱暴发和提高这些细菌的环境适应能力至关重要。