Collins Amanda C, Lekkas Damien, Nemesure Matthew D, Griffin Tess Z, Price George D, Pillai Arvind, Nepal Subigya, Heinz Michael V, Campbell Andrew T, Jacobson Nicholas C
Department of Psychiatry, Massachusetts General Hospital.
Center for Technology and Behavioral Health, Geisel School of Medicine, Dartmouth College.
J Psychopathol Clin Sci. 2025 Jul;134(5):488-502. doi: 10.1037/abn0001003. Epub 2025 Apr 10.
Individuals with major depressive disorder (MDD) experience fewer positive and more negative emotions and use fewer positive words to describe themselves. Natural language processing techniques have been used to predict depression, with pronoun and emotion usage being identified as important features. However, it is unclear how depressed individuals use positive and negative words when writing about themselves. Individuals with MDD ( = 258) completed ecological momentary assessments three times a day (including the Patient Health Questionnaire-9 [PHQ-9] and a free-text diary entry) and weekly ecological momentary assessments (including a free-text response to a life events prompt) over a 90-day study period. Using natural language processing techniques, we generated 20 model features to detect and predict averages of and changes in weekly depression from diary entries. Four regression models detected and predicted total PHQ-9 and changes in PHQ-9, and two classification models detected and predicted moderate to severe depression. The models classified current (area under the receiver operating curve [AUC] = 0.68) and future depression (AUC = 0.63), and suggest that lower valence increased usage of "I"/"me"/"my," and lower valence of passages with "I"/"me" as the subject, influenced model predictions toward more severe depression, supporting prior research. These findings highlight that depressed individuals use less positive and more negative words when referring to themselves. Treatments targeting positive affect and digital interventions with written components may be beneficial for targeting MDD. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
患有重度抑郁症(MDD)的个体体验到的积极情绪较少,消极情绪较多,并且使用较少的积极词汇来描述自己。自然语言处理技术已被用于预测抑郁症,代词和情绪的使用被确定为重要特征。然而,尚不清楚抑郁症患者在描述自己时如何使用积极和消极词汇。在为期90天的研究期间,258名患有MDD的个体每天进行三次生态瞬时评估(包括患者健康问卷-9[PHQ-9]和一篇自由文本日记条目)以及每周一次的生态瞬时评估(包括对生活事件提示的自由文本回复)。使用自然语言处理技术,我们生成了20个模型特征,以从日记条目中检测和预测每周抑郁症的平均值及变化。四个回归模型检测并预测了PHQ-9总分及PHQ-9的变化,两个分类模型检测并预测了中度至重度抑郁症。这些模型对当前抑郁症(受试者工作特征曲线下面积[AUC]=0.68)和未来抑郁症(AUC=0.63)进行了分类,并表明较低的效价增加了“I”/“me”/“my”的使用频率,以“I”/“me”为主语的段落的较低效价会使模型预测更倾向于更严重的抑郁症,这支持了先前的研究。这些发现突出表明,抑郁症患者在提及自己时使用的积极词汇较少,消极词汇较多。针对积极情绪的治疗和包含书面内容的数字干预可能对治疗MDD有益。(PsycInfo数据库记录(c)2025美国心理学会,保留所有权利)