Suppr超能文献

迈向μ阿片受体偏向激动剂的预测模型。

Toward Predictive Models of Biased Agonists of the Mu Opioid Receptor.

作者信息

Tun-Rosado Fernando J, Abreu-Martínez Elier E, Magdaleno-Rodriguez Axel, Martinez-Mayorga Karina

机构信息

Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán 97357, México.

Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Mérida, Yucatán 97310, México.

出版信息

Biochemistry. 2025 May 6;64(9):1943-1949. doi: 10.1021/acs.biochem.4c00885. Epub 2025 Apr 10.

Abstract

The mu-opioid receptor (MOR), a member of the G-protein-coupled receptor superfamily, is pivotal in pain modulation and analgesia. Biased agonism at MOR offers a promising avenue for developing safer opioid therapeutics by selectively engaging specific signaling pathways. This study presents a comprehensive analysis of biased agonists using a newly curated database, BiasMOR, comprising 166 unique molecules with annotated activity data for GTPγS, cAMP, and β-arrestin assays. Advanced structure-activity relationship (SAR) analyses, including network similarity graphs, maximum common substructures, and activity cliff identification, reveal critical molecular features underlying bias signaling. Modelability assessments indicate high suitability for predictive modeling, with RMODI indices exceeding 0.96 and SARI indices highlighting moderately continuous SAR landscapes for cAMP and β-arrestin assays. Interaction patterns for biased agonists are discussed, including key residues such as D, Y, and Y. Comparative studies of enantiomer-specific interactions further underscore the role of ligand-induced conformational states in modulating signaling pathways. This work underscores the potential of combining computational and experimental approaches to advance the understanding of MOR-biased signaling, paving the way for safer opioid therapies. The database provided here will serve as a starting point for designing biased mu opioid receptor ligands and will be updated as new data become available. Increasing the repertoire of biased ligands and analyzing molecules collectively, as the database described here, contributes to pinpointing structural features responsible for biased agonism that can be associated with biological effects still under debate.

摘要

μ-阿片受体(MOR)是G蛋白偶联受体超家族的成员,在疼痛调节和镇痛中起关键作用。MOR的偏向性激动作用为通过选择性激活特定信号通路来开发更安全的阿片类药物提供了一条有前景的途径。本研究使用一个新整理的数据库BiasMOR对偏向性激动剂进行了全面分析,该数据库包含166个独特分子,并带有GTPγS、cAMP和β- arrestin检测的注释活性数据。先进的构效关系(SAR)分析,包括网络相似性图、最大公共子结构和活性悬崖识别,揭示了偏向性信号传导背后的关键分子特征。可建模性评估表明其非常适合预测建模,RMODI指数超过0.96,SARI指数突出了cAMP和β- arrestin检测中适度连续的SAR格局。讨论了偏向性激动剂的相互作用模式,包括关键残基如D、Y和Y。对映体特异性相互作用的比较研究进一步强调了配体诱导的构象状态在调节信号通路中的作用。这项工作强调了结合计算和实验方法来推进对MOR偏向性信号传导理解的潜力,为更安全的阿片类药物治疗铺平了道路。这里提供的数据库将作为设计偏向性μ阿片受体配体的起点,并将随着新数据的获得而更新。增加偏向性配体的种类并像这里描述的数据库那样对分子进行集体分析,有助于确定导致偏向性激动作用的结构特征,这些特征可能与仍在争论中的生物学效应相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00e6/12060265/c04b5083a6f1/bi4c00885_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验