Yu Wenjie, Yu Shuaibing, Zhang Fenghong, Xu Qinyuan, Zhang Xueji, Kong Jinming
School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, PR China.
Anal Chim Acta. 2025 May 22;1352:343926. doi: 10.1016/j.aca.2025.343926. Epub 2025 Mar 10.
Lipopolysaccharide (LPS), a bacterial endotoxin prevalent in Gram-negative pathogens (e.g., Escherichia coli), induces severe immune responses linked to endotoxemia and hepatitis. Despite its clinical significance, conventional LPS detection methods (e.g., limulus amebocyte lysate assays) face challenges including operational complexity, high cost, and limited sensitivity. Addressing these limitations necessitates the development of innovative strategies for ultrasensitive LPS quantification.
We present an electrochemical biosensor integrating dual-signal amplification: (1) affinity amplification via phenylboronic acid-cis-diol covalent binding on LPS polysaccharide chains, and (2) photocatalytic amplification using perylene diimide (PDI)-mediated atom transfer radical polymerization (Photo-ATRP) under red light (615-650 nm). Thiol-functionalized DNA aptamers enable specific LPS capture, while PDI catalyzes rapid ferrocene monomer polymerization, achieving exponential signal enhancement. The sensor demonstrates exceptional performance: (1) Ultrahigh sensitivity: Detection limit of 0.25 fg/mL. (2) Wide dynamic range: Linear response from 1.0 fg/mL to 0.1 pg/mL. (3) Robust specificity: Minimal interference in human serum matrices.
This work establishes a paradigm for LPS detection through three key advances: (1) Operational simplicity: Eliminates enzymatic/nanomaterial dependencies via metal-free PDI photocatalysis. (2) Translational utility: Serum compatibility supports clinical diagnostics and point-of-care applications. (3) Catalytic innovation: Validates PDI as a high-efficiency photocatalyst for controlled polymer synthesis. The sensor's low-cost fabrication, rapid response (<4.5 h), and femtomolar sensitivity position it as a transformative tool for sepsis monitoring and biomedical research.
脂多糖(LPS)是革兰氏阴性病原体(如大肠杆菌)中普遍存在的一种细菌内毒素,可引发与内毒素血症和肝炎相关的严重免疫反应。尽管其具有临床意义,但传统的LPS检测方法(如鲎试剂检测法)面临诸多挑战,包括操作复杂、成本高以及灵敏度有限。解决这些局限性需要开发用于超灵敏LPS定量的创新策略。
我们展示了一种集成双信号放大的电化学生物传感器:(1)通过苯基硼酸 - 顺式二醇在LPS多糖链上的共价结合进行亲和放大,以及(2)在红光(615 - 650 nm)下使用苝二酰亚胺(PDI)介导的原子转移自由基聚合(光引发原子转移自由基聚合)进行光催化放大。硫醇功能化的DNA适配体能够特异性捕获LPS,而PDI催化二茂铁单体快速聚合,实现指数级信号增强。该传感器表现出卓越的性能:(1)超高灵敏度:检测限为0.25 fg/mL。(2)宽动态范围:在1.0 fg/mL至0.1 pg/mL之间呈线性响应。(3)强大的特异性:在人血清基质中干扰极小。
这项工作通过三项关键进展建立了LPS检测的范例:(1)操作简便:通过无金属的PDI光催化消除了对酶/纳米材料的依赖。(2)转化实用性:血清兼容性支持临床诊断和即时检测应用。(3)催化创新:验证了PDI作为用于可控聚合物合成的高效光催化剂。该传感器的低成本制造、快速响应(<4.5小时)和飞摩尔灵敏度使其成为脓毒症监测和生物医学研究的变革性工具。