文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用MIDAS v3和StrainPGC准确估计宏基因组数据中种内微生物基因含量变异。

Accurate estimation of intraspecific microbial gene content variation in metagenomic data with MIDAS v3 and StrainPGC.

作者信息

Smith Byron J, Zhao Chunyu, Dubinkina Veronika, Jin Xiaofan, Zahavi Liron, Shoer Saar, Moltzau-Anderson Jacqueline, Segal Eran, Pollard Katherine S

机构信息

The Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, USA.

Chan Zuckerberg Biohub San Francisco, San Francisco, California 94158, USA.

出版信息

Genome Res. 2025 May 2;35(5):1247-1260. doi: 10.1101/gr.279543.124.


DOI:10.1101/gr.279543.124
PMID:40210439
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12047655/
Abstract

Metagenomics has greatly expanded our understanding of the human gut microbiome by revealing a vast diversity of bacterial species within and across individuals. Even within a single species, different strains can have highly divergent gene content, affecting traits such as antibiotic resistance, metabolism, and virulence. Methods that harness metagenomic data to resolve strain-level differences in functional potential are crucial for understanding the causes and consequences of this intraspecific diversity. The enormous size of pangenome references, strain mixing within samples, and inconsistent sequencing depth present challenges for existing tools that analyze samples one at a time. To address this gap, we updated the MIDAS pangenome profiler, now released as version 3, and developed StrainPGC, an approach to strain-specific gene content estimation that combines strain tracking and correlations across multiple samples. We validate our integrated analysis using a complex synthetic community of strains from the human gut and find that StrainPGC outperforms existing approaches. Analyzing a large, publicly available metagenome collection from inflammatory bowel disease patients and healthy controls, we catalog the functional repertoires of thousands of strains across hundreds of species, capturing extensive diversity missing from reference databases. Finally, we apply StrainPGC to metagenomes from a clinical trial of fecal microbiota transplantation for the treatment of ulcerative colitis. We identify two strains, from two different donors, that are both frequently transmitted to patients but have notable differences in functional potential. StrainPGC and MIDAS v3 together enable precise, intraspecific pangenomic investigations using large collections of metagenomic data without microbial isolation or de novo assembly.

摘要

宏基因组学通过揭示个体内部和个体之间种类繁多的细菌,极大地扩展了我们对人类肠道微生物群的理解。即使在单个物种内,不同菌株的基因含量也可能有很大差异,从而影响抗生素抗性、新陈代谢和毒力等特征。利用宏基因组数据来解析功能潜力方面菌株水平差异的方法,对于理解这种种内多样性的原因和后果至关重要。泛基因组参考的巨大规模、样本中的菌株混合以及测序深度不一致,给现有的一次分析一个样本的工具带来了挑战。为了弥补这一差距,我们更新了现在作为第3版发布的MIDAS泛基因组分析器,并开发了StrainPGC,这是一种结合菌株追踪和多个样本间相关性来估计菌株特异性基因含量的方法。我们使用来自人类肠道的复杂合成菌株群落验证了我们的综合分析,发现StrainPGC优于现有方法。通过分析来自炎症性肠病患者和健康对照的大量公开可用宏基因组数据集,我们编目了数百个物种中数千个菌株的功能库,捕捉到了参考数据库中缺失的广泛多样性。最后,我们将StrainPGC应用于粪便微生物群移植治疗溃疡性结肠炎的临床试验的宏基因组。我们鉴定出来自两个不同供体的两种菌株,它们都经常传播给患者,但在功能潜力上有显著差异。StrainPGC和MIDAS v3共同实现了使用大量宏基因组数据进行精确的种内泛基因组研究,而无需微生物分离或从头组装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/e608c072277c/1247f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/f13a45007812/1247f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/895592d2dcf0/1247f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/0ba0cf4deee2/1247f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/5848b8635bae/1247f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/e608c072277c/1247f05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/f13a45007812/1247f01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/895592d2dcf0/1247f02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/0ba0cf4deee2/1247f03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/5848b8635bae/1247f04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f56d/12047655/e608c072277c/1247f05.jpg

相似文献

[1]
Accurate estimation of intraspecific microbial gene content variation in metagenomic data with MIDAS v3 and StrainPGC.

Genome Res. 2025-5-2

[2]
An Expanded Gene Catalog of Mouse Gut Metagenomes.

mSphere. 2021-2-24

[3]
Strain-resolved microbiome sequencing reveals mobile elements that drive bacterial competition on a clinical timescale.

Genome Med. 2020-5-29

[4]
An integrated strain-level analytic pipeline utilizing longitudinal metagenomic data.

Microbiol Spectr. 2024-11-5

[5]
Human reference gut microbiome catalog including newly assembled genomes from under-represented Asian metagenomes.

Genome Med. 2021-8-27

[6]
Expanded catalog of microbial genes and metagenome-assembled genomes from the pig gut microbiome.

Nat Commun. 2021-2-17

[7]
Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.

BMC Bioinformatics. 2016-1-16

[8]
Intestinal microbiota domination under extreme selective pressures characterized by metagenomic read cloud sequencing and assembly.

BMC Bioinformatics. 2019-12-2

[9]
Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation.

Microbiome. 2022-3-25

[10]
Mining metagenomic data to gain a new insight into the gut microbial biosynthetic potential in placental mammals.

Microbiol Spectr. 2024-10-3

引用本文的文献

[1]
Linkage of nucleotide and functional diversity varies across gut bacteria.

bioRxiv. 2025-6-7

[2]
Improved detection of microbiome-disease associations via population structure-aware generalized linear mixed effects models (microSLAM).

PLoS Comput Biol. 2025-5-27

[3]
Small amounts of misassembly can have disproportionate effects on pangenome-based metagenomic analyses.

mSphere. 2025-5-27

[4]
Exclusive enteral nutrition initiates individual protective microbiome changes to induce remission in pediatric Crohn's disease.

Cell Host Microbe. 2024-11-13

[5]
Small amounts of misassembly can have disproportionate effects on pangenome-based metagenomic analyses.

bioRxiv. 2024-10-13

本文引用的文献

[1]
StrainPanDA: Linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data.

Imeta. 2022-8-1

[2]
Identification of mobile genetic elements with geNomad.

Nat Biotechnol. 2024-8

[3]
Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization.

Nat Commun. 2023-6-14

[4]
Hospital and community wastewater as a source of multidrug-resistant ESBL-producing .

Front Cell Infect Microbiol. 2023

[5]
Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4.

Nat Biotechnol. 2023-11

[6]
Pitfalls of genotyping microbial communities with rapidly growing genome collections.

Cell Syst. 2023-2-15

[7]
Genotyping Microbial Communities with MIDAS2: From Metagenomic Reads to Allele Tables.

Curr Protoc. 2022-12

[8]
MIDAS2: Metagenomic Intra-species Diversity Analysis System.

Bioinformatics. 2023-1-1

[9]
Scalable Microbial Strain Inference in Metagenomic Data Using StrainFacts.

Front Bioinform. 2022-5-16

[10]
Design, construction, and in vivo augmentation of a complex gut microbiome.

Cell. 2022-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索