Suppr超能文献

设计、构建和体内增强复杂的肠道微生物组。

Design, construction, and in vivo augmentation of a complex gut microbiome.

机构信息

Department of Gastroenterology & Hepatology, Stanford School of Medicine, Stanford, CA 94305, USA.

Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Cell. 2022 Sep 15;185(19):3617-3636.e19. doi: 10.1016/j.cell.2022.08.003. Epub 2022 Sep 6.

Abstract

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.

摘要

在小鼠中模拟人类肠道微生物组的努力,使我们深入了解了宿主-微生物相互作用的机制。然而,迄今为止研究的模型群落是定义明确或复杂的,但不是两者兼而有之,这限制了它们的用途。在这里,我们构建并表征了一种由 104 种细菌组成的体外定义群落,这些细菌由人类肠道微生物组(hCom1)中最常见的分类群组成。然后,我们使用迭代实验过程来填补空缺的生态位:无菌小鼠用 hCom1 定植,然后用人类粪便样本进行挑战。我们鉴定了在粪便挑战后定植的新物种,并将它们添加到 hCom1 中,得到 hCom2。在无菌小鼠中,hCom2 对粪便挑战表现出更高的稳定性和对致病性大肠杆菌的强大定植抗性。用 hCom2 或人类粪便群落定植的小鼠表型相似,这表明该联合体将能够对与微生物组相关表型的物种和基因进行机制研究。

相似文献

1
Design, construction, and in vivo augmentation of a complex gut microbiome.
Cell. 2022 Sep 15;185(19):3617-3636.e19. doi: 10.1016/j.cell.2022.08.003. Epub 2022 Sep 6.
2
Microbiome Resilience despite a Profound Loss of Minority Microbiota following Clindamycin Challenge in Humanized Gnotobiotic Mice.
Microbiol Spectr. 2022 Feb 23;10(1):e0196021. doi: 10.1128/spectrum.01960-21. Epub 2022 Jan 12.
3
Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.
PLoS One. 2018 May 15;13(5):e0196510. doi: 10.1371/journal.pone.0196510. eCollection 2018.
4
Engraftment of aging-related human gut microbiota and the effect of a seven-species consortium in a pre-clinical model.
Gut Microbes. 2023 Dec;15(2):2282796. doi: 10.1080/19490976.2023.2282796. Epub 2023 Nov 27.
6
Resources to Facilitate Use of the Altered Schaedler Flora (ASF) Mouse Model to Study Microbiome Function.
mSystems. 2022 Oct 26;7(5):e0029322. doi: 10.1128/msystems.00293-22. Epub 2022 Aug 15.
8
Genesis of fecal floatation is causally linked to gut microbial colonization in mice.
Sci Rep. 2022 Oct 27;12(1):18109. doi: 10.1038/s41598-022-22626-x.
9
A Simple Gut Model for Studying the Interaction between Escherichia coli and the Intestinal Commensal Microbiota in Cecal Mucus.
Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.02166-18. Print 2018 Dec 15.
10
mSphere of Influence: Translating Gut Microbiome Studies To Benefit Human Health.
mSphere. 2020 Jul 8;5(4):e00592-20. doi: 10.1128/mSphere.00592-20.

引用本文的文献

2
Learning ecosystem-scale dynamics from microbiome data with MDSINE2.
Nat Microbiol. 2025 Sep 9. doi: 10.1038/s41564-025-02112-6.
3
StrainR2 accurately deconvolutes strain-level abundances in synthetic microbial communities.
Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf440.
4
Gut bacteria degrade purines via the 2,8-dioxopurine pathway.
Nat Microbiol. 2025 Aug 6. doi: 10.1038/s41564-025-02079-4.
6
Microbiota and kidney disease: the road ahead.
Nat Rev Nephrol. 2025 Oct;21(10):702-716. doi: 10.1038/s41581-025-00988-5. Epub 2025 Jul 28.
7
8
Coarse-grained model of serial dilution dynamics in synthetic human gut microbiome.
PLoS Comput Biol. 2025 Jul 14;21(7):e1013222. doi: 10.1371/journal.pcbi.1013222. eCollection 2025 Jul.
9
Straining to define a healthy microbiome.
mSphere. 2025 Jul 29;10(7):e0079724. doi: 10.1128/msphere.00797-24. Epub 2025 Jul 11.

本文引用的文献

1
Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome.
Cell. 2022 Feb 3;185(3):547-562.e22. doi: 10.1016/j.cell.2021.12.035. Epub 2022 Jan 19.
2
Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota.
Cell Host Microbe. 2022 Feb 9;30(2):260-272.e5. doi: 10.1016/j.chom.2021.12.008. Epub 2022 Jan 19.
4
Dissecting the contribution of host genetics and the microbiome in complex behaviors.
Cell. 2021 Apr 1;184(7):1740-1756.e16. doi: 10.1016/j.cell.2021.02.009. Epub 2021 Mar 10.
6
A metabolic pathway for bile acid dehydroxylation by the gut microbiome.
Nature. 2020 Jun;582(7813):566-570. doi: 10.1038/s41586-020-2396-4. Epub 2020 Jun 17.
7
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells.
Nature. 2020 May;581(7809):475-479. doi: 10.1038/s41586-020-2193-0. Epub 2020 Apr 15.
8
A complete domain-to-species taxonomy for Bacteria and Archaea.
Nat Biotechnol. 2020 Sep;38(9):1079-1086. doi: 10.1038/s41587-020-0501-8. Epub 2020 Apr 27.
9
Depletion of microbiome-derived molecules in the host using genetics.
Science. 2019 Dec 13;366(6471). doi: 10.1126/science.aav1282.
10
LRScaf: improving draft genomes using long noisy reads.
BMC Genomics. 2019 Dec 9;20(1):955. doi: 10.1186/s12864-019-6337-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验